
1Object Oriented Programming

PYTHON OBJECT MODEL
OBJECT ORIENTED DESIGN

Project 3

2Object Oriented Programming

 Download the file graphics.py from the link:

https://samyzaf.com/braude/PYTHON/projects/graphics.py

 This file implements our graphical environment. Specifically, it defines a

canvas window on which we can draw points, lines, rectangles, and

other geometrical shapes

 There is no need to read or understand the code in this module

 It is based on the the Tkinter module, which is the simplest graphics

environment that comes with any Python distribution and is therefore

always available

 If you want to experiment with graphics programming, you may start

with:

http://www.tkdocs.com/tutorial/

https://samyzaf.com/braude/PYTHON/projects/graphics.py
http://www.tkdocs.com/tutorial/

3Object Oriented Programming

 p = Point(x,y) [constructor]

 Create a new point p from two integers: x, y

 Our domain is the two-dimensional plane for abstract circuit design (CAD system)

 p.x = x coordinate [field]

 p.y = y coordinate [field]

 p.move(dx, dy) [mutator]

 Move the point p to new coordinates: x+dx, y+dy

 p.draw() [accessor]

 Draw the point on the screen

 p.text(t) [accessor]

 Draw a texts string t above the point

4Object Oriented Programming

 Reminder: in test driven methodology you write your tests before the implementation of

your ADT !!!

 After implementation, your tests should run and PASS after each modification you make

to your implementation (“nightly test regression”)

 The following tests are your “insurance policy” that your implementation is correct. The

more tests you write, the more you’re insured

Testing our Point ADT: test 1
def test1():

print "===== Testing The Point Class ====="
p1 = Point(20,20)
p2 = Point(50,60)
print "Testing the Python print statement on Point p1:"
print p1
print "Testing the Python print statement on Point p2:"
print p2
print "Test 1: PASSED"

5Object Oriented Programming

 Here is a more formal and practical test

def test2():
p1 = Point(20,20)
p2 = Point(50,60)
assert p1.x == 20 and p1.y == 20
assert p2.x == 50 and p2.y == 60
p1.move(100, 200)
p2.move(100, 200)
assert p1.x == 120 and p1.y == 220
assert p2.x == 150 and p2.y == 260
print "Test 2: PASSED"

6Object Oriented Programming

 Download the file point.py from the link:

https://samyzaf.com/braude/PYTHON/projects/point.py

 We shall spend a few minutes in lab for reading and

discussing the code before you start your work

https://samyzaf.com/braude/PYTHON/projects/point.py

7Object Oriented Programming

 Write a function make_ring() which draw 24 points on a

circle with center=(200,200) and radius=100:

8Object Oriented Programming

 Design and write a class Ring which can be used to draw rings as follow

 Hint:

 the big circle center is: (300,300), radius=200, and it has 48 points

 The small circle radius=50, has 18 points, and the centers are easy to compute

9Object Oriented Programming

 l = Line(p1,p2) [constructor]

 Create a new line object l from two point objects: p1, p2

 l.p1 get the first point [field]

 l.p2 get the second point [field]

 l.move(dx, dy) [mutator]

 Move the line l by dx units horizontally and dy units vertically

 l.length() [accessor]

 Return line length – the distance between the points p1 and p2

 l.middle() [accessor]

 Return the middle point of this line (as a Point object!)

 l.draw() [accessor]

 Draw the line on a canvas

10Object Oriented Programming

 Download the file line.py from the link:

https://samyzaf.com/braude/PYTHON/projects/line.py

 This file contains an implementation of the Line class

https://samyzaf.com/braude/PYTHON/projects/line.py

11Object Oriented Programming

 A simple VLSI BUS consists of a well structured group of lines (sometimes

called “signals” or “bits”)

 Write a function draw_bus() for drawing a 32 bits BUS with the following

characteristics: xlow = 200, xhigh=665, dx=15, ylow=40, yhigh=440

 Make sure to draws the points too!

x

y

xlow=200 xhigh=665

ylow=40

yhigh=440

12Object Oriented Programming

 A simple VLSI GRID consists of an equally spaced horizontal and vertical lines

as in the bottom figure

 Write a short function draw_grid(m,n,dx,dy) for drawing an mxn grid such that

the distance between vertical lines is dx, and distance between horizontal lines

is dy

x

y

Column 0 Column n

Row 0

Row m

dy

dx

13Object Oriented Programming

 r = Rectangle(x1,y1,x2,y2) [constructor]

 Create a new rectangle r from four integers: x1, y1, x2, y2

 Our domain is the two-dimensional plane for abstract circuit design (CAD system)

 r.draw()

 r.x1 = x1 coordinate field [field]

 r.y1 = y1 coordinate field [field]

 r.x2 = x2 coordinate field [field]

 r.y2 = y2 coordinate field [field]

 r.move(dx, dy) [mutator]

 Move the rectangle r to new coordinates: x1+dx, y1+dy, x2+dx, y2+dy

 r.area() [accessor]

 r.width() [accessor]

 r.height() [accessor]

 r.center() [accessor]

(x1,y1)

(x2,y2)

14Object Oriented Programming

 Download the rectangle module from:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=PYTHON/projects/rectangle.py

 Here is a simple code for testing the Rectangle class

Make sure it runs and is PASSED

Testing our Rectangle ADT: test 1

def test1():
r = Rectangle(30, 20 ,80, 70)
assert r.area() == 2500
assert r.width() == 50
assert r.height() == 50
r.move(15,25)
assert r.x1 == 45
assert r.y2 == 95
assert r.area() == 2500
print "Test PASSED"

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=PYTHON/projects/rectangle.py

15Object Oriented Programming

 Look at the simple Python implementation of the Rectangle ADT at

project #3 section in the Python course web site:

https://samyzaf.com/braude/PYTHON/#project3

 Note that this implementation also contains a draw() method !

 Problem 10:

Use this implementation to write a short script that produces the

following effect:

Hint:

r = Rectangle(10, 10 ,160, 130)

dx = 9, dy = 6, there are 25 rectangles

The solution is test3() in the above file … but try first before you look it up!

https://samyzaf.com/braude/PYTHON/#project3

16Object Oriented Programming

 Download the file textfile.py from the link:

https://samtzaf.com/braude/PYTHON/projects/textfile.py

 This file implements the Textfile class for analyzing words

frequency in large text files

 Read the usage description at the beginning of the file

 Use the Textfile class to find the 10 most used words in the

book:

https://samyzaf.com/braude/PYTHON/projects/jude.txt

 Also indicate how many times each of these words appear

in the book?

 Make sure to write a function that can be reused for other

books …

https://samtzaf.com/braude/PYTHON/projects/textfile.py
https://samyzaf.com/braude/PYTHON/projects/jude.txt

17Object Oriented Programming

 Write a function most_common_words(file, n)

which accepts a text file name and an integer n and prints

the n most frequent words in the file and their frequency

count:
file = "D:/BRAUDE/PYTHON/Projects/proj1/proj1.txt"

most_frequent_words(file, 10)
1. the 88
2. of 57
3. a 52
4. in 47
5. is 34
6. and 32
7. are 27
8. to 25
9. numbers 16
10. cards 15

Hint: start with tf = Textfile(file)

