
Project 1
Python Programming

http://en.wikipedia.org/wiki/File:High-Yellow_Sorong_Amethystine_Scrub_Python.jpg
http://en.wikipedia.org/wiki/File:High-Yellow_Sorong_Amethystine_Scrub_Python.jpg

4.2

Sources

 Exercises are partly based on MIT course MIT6_189

homework and Project Euler web site

(http://projecteuler.net).

4.3

Problem 1: High Math

 Write a function integrate(f,a,b,n=1000) which accepts

 A real function f

 An interval points a and b

 An optional division number n (defaults to 1000)

 It should compute the definite integral of f(x) over the

interval (a,b) as a Rieman sum approximation.

 Try to test it for the functions:

 f1(x)=x**3

 f2(x) = x**3*sin(x).

4.4

Problem 2: DataBase processing

 Run this list comprehension in your prompt:
List1 = [x**2 for x in range(5,12)]
List2 = [x+y for x in [10,20,30,40] for y in [1,2,3,4]]

 Figure out what is going on here, and write a nested for

loop that gives you the same result.

 Make sure what is going on makes sense to you!

4.5

Problem 3: Dictionary, quick ref
• d = dict() creates an empty dictionary

* d = dict(key1=value1, key2=value2, ...) - Create a new dictionary with initialized keys
example:

d = dict(name='Avi Cohen', age=32, id=5802231, address='Hayarden 43, Gedera')
print "Avi's age is:", d['age']
print "Avi's address is:", d['address']
print "Avi has moved to a new town:"
d['address'] = 'Hayarkon 25, Haifa‘

* The same thing can be achieved by:
d = {key1: value1, key2: value2, ...}

example:
d = { 'name': 'Avi Cohen', 'age': 32, 'id': 5802231, 'address': 'Hayarden 43, Gedera' }
or:
pairs = [('name', 'Avi Cohen'), ('age', 32), ('id', 5802231),

('address', 'Hayarden 43, Gedera')]
d = dict(pairs)

* d[key] - returns the value of the key. (What if there's no such key?)

* d[key] = newvalue - maps newvalue to key.
Overwrites any previous value.
Remember 'newvalue' can be any valid Python data structure

* del d[key] - deletes the mapping with that key from d.
* len(d) - returns the number of keys in d.
* x in d, x not in d - checks whether the key x is in the dictionary d.
* d.keys() - returns a list of all the keys in the dictionary.
* d.values() - returns a list of all the values in the dictionary.

4.6

Problem 3: Dictionary, quick ref

 Given two lists:

names = ['Alice', 'Bob', 'Cathy', 'Dan', 'Ed', 'Frank', 'Gary', 'Helen', 'Irene', 'Jack', 'Kelly', 'Larry']
ages = [20, 21, 18, 18, 19, 20, 20, 19, 19, 19, 22, 19]

 These lists match up, so Alice's age is 20, Bob's age is 21,

and so on.

 Write a function combine_lists that combines these lists into

a dictionary

 Hint 1: what should the keys of this dictionary?

 Hint 2: what should be the values of this dictionary?

 Write a function people(age) that takes in an age and

returns the names of all the people who are that age

4.7

Problem 3: Test Program (QA)

 Test your program's functions by running the following Python

code:

print 'Dan' in people(18) and 'Cathy' in people(18)
print 'Ed' in people(19) and 'Helen' in people(19) and 'Irene' in people(19) \

and 'Jack' in people(19) and 'Larry' in people(19)
print 'Alice' in people(20) and 'Frank' in people(20) and 'Gary' in people(20)
print people(21) == ['Bob']
print people(21) == ['Bob', 'Dan', 'Kelly']
print people(23) == []

4.8

Problem 4: Word Counting

 Download the text file:

https://samyzaf.com/braude/PYTHON/projects/oliver_twist.txt

 (a) Write a function word_count(file) that prints the number of lines,

words, and characters in a file. Test it on the above file:

 (b) Write a function word_frequency(file) which counts how many

times each word appears in that book.

 To make it simple: a word should consist only of English letters (no

punctuation marks, hyphens, or quotes).

 Hint: you should build a dictionary

 Hint: Use Python string.punctuation to remove punctuation characters from words.

https://samyzaf.com/braude/PYTHON/projects/oliver_twist.txt

4.9

Problem 4: Word Counting

 Test your program by running it on oliver_twist.txt book (you should

get 12733 words!)

 Try to sort the words by frequency (from most frequent to least

frequent).

 (c) What is the most frequent 3 letters word in this book? How many

times it appears in this book?

 (d) How many words occur more than 1000 times? (don't count your

output, write a program to find this!)

