
1Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

PARALLEL

PROGRAMMING

Adapted from David Beazley’s paper:

“An Introduction to Python Concurrency”

Presented at USENIX Technical Conference

San Diego, June, 2009

David Beazley: http://www.dabeaz.com

2Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Code Examples and Files

 Thanks Dave Beazley for contributing his fantastic set of

source code examples on Python concurrency and

parallel programming

 We have also added a few more examples and

rephrased Dave’s examples to suite our course

objectives

 Our source code repository can be retrieved from:
http://www.samyzaf.com/braude/OS/PROJECTS/PARALLEL_PROGRAMMING_LAB.zip

 Dave Beazley original resources can be retrieved from:

http://www.dabeaz.com/usenix2009/concurrent/

http://www.samyzaf.com/braude/OS/PROJECTS/PARALLEL_PROGRAMMING_LAB.zip
http://www.dabeaz.com/usenix2009/concurrent/

3Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Concurrent Programming

 Doing more than one thing at a time

 Writing programs that can work on more than one thing at a time

 Of particular interest to programmers and systems designers

 Writing code for running on “big iron”

 But also of interest for users of multicore desktop computers

 Goal is to go beyond the user manual and tie everything together

into a "bigger picture."

4Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Examples

 Web server that communicates with thousand clients (Google)

 Web client (Chrome or Firefox) that displays 10 or 20 tabs

 In the same process it may do the following tasks concurrently:

 Download several images, audio files, movies (concurrently)

 Display an image and a movie

 Connect to several servers

 Microsoft Word can do several tasks at the same time

 Let the user insert text with no waits or interrupts

 Download/upload stuff

 Backup the document every few seconds

 Check spelling and grammar (and even mark words as the user is

typing)

 Image processing software that uses 8 CPU cores for parallel

intense matrix multiplications

5Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multitasking

 Concurrency usually means multitasking

 If only one CPU is available, the only way it can run multiple tasks

is by rapidly switching between them in one of two way:

 Process context switch (two processes)

 Thread context switch (two threads in one process)

6Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Parallel Processing

 If you have many CPU’s or CORE’s then you can have true

parallelism: the two tasks run simultaneously

 If the total number of tasks exceeds the number of CPUs, then

some CPU’s must multitask (switch between tasks)

7Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Task Execution

 Every task executes by alternating between CPU processing and

I/O handling:

 disk read/write

 network send/receive

 For I/O, tasks must wait (sleep): the underlying system will carry

out the I/O operation and wake the task when it's finished

8Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

CPU Bound Tasks

 A task is "CPU Bound" if it spends most of its time processing with

little I/O

 Examples:

 Image processing

 Weather forecast system

 Heavy mathematical computations

9Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

I/O Bound Tasks

 A task is "I/O Bound" if it spends most of its time waiting for I/O

 Examples:

 Reading input from the user (text processors)

 Networking

 File Processing

 Most "normal" programs are I/O bound

10Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Shared Memory

 In many cases, two tasks need to share information (“cooperating

tasks”) and access an object simultaneously

 Two threads within the same process always share all memory of

that process

 Two independent processes on the other hand need special

mechanisms to communicate between them

11Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

IPC – Inter Process Communication

 Processes within a system may be independent or cooperating

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need inter-process communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

12Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Two Types of IPC

(a) Kernel shared memory: Pipe, Socket, FIFO, mailboxes

(b) Process shared memory (OS is not involved here!)

13Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

IPC – Inter Process Communication

 The simplest mechanism for two processes to communicate are

 Pipe

 FIFO

 Shared memory (memory mapped regions)

 Socket

 Processes can also communicate through the file system, but it

tends to be too slow and volatile (disk is full, unwritable, or busy)

14Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Distributed Computing

 Tasks may be running on distributed systems

 Sometimes on two different continents

 Cluster of workstations

 Usually: communication via sockets (or MPI)

15Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Programmer Performance

 Programmers are often able to get complex systems to "work" in

much less time using a high-level language like Python than if

they're spending all of their time hacking C code

 In some cases scripting solutions might be even competitive with

C++, C# and, especially, Java

 The reason is that when you are operating at a higher level, you

often are able to find a better, more optimal, algorithm, data

structures, problem decomposition schema, or all of the above

16Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Intel VLSI Tools as an Example

 In recent years, a fundamental transition has been occurring in the

way industry developers write computer programs

 The change is a transition from system programming languages

such as C or C++ to scripting languages such as Perl, Python,

Ruby, JavaScript, PHP, etc.

17Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Performance is Irrelevant!

 Many concurrent programs are "I/O bound“

 They spend virtually all of their time sitting around waiting for

 Clients to connect

 Client requests

 Client responses

 Python can "wait" just as fast as C

 One exception: if you need an extremely rapid response time as in

real-time systems

18Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

You Can Always Go Faster

Python can be extended with C code

Look at ctypes, Cython, Swig, etc.

 If you need really high-performance, you're not

coding Python -- you're using C extensions

This is what most of the big scientific computing

hackers are doing

 It's called: "using the right tool for the job"

19Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Process Concept Review

 A process (or job) is a program in execution

 A process includes:

1. Text (program code)

2. Data (constants and fixed tables)

3. Heap (dynamic memory)

4. Stack (for function calls and temporary variables)

5. Program counter (current instruction)

6. CPU registers

7. Open files table (including sockets)

 To better distinguish between a program and a
process, note that a single Word processor program
may have 10 different processes running
simultaneously

 Consider multiple users executing the same Internet
explorer (each has the 6 things above)

 Computer activity is the sum of all its processes

20Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Process States

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

21Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

CPU Process Scheduling

 Modern operating systems can run hundreds (and even thousands)

of processes in parallel

 Of course, at each moment, only a single process can control a

CPU, but the operating system is switching processes every 15

milliseconds (on average) so that at 1 minute, an operating system

can swap 4000 processes!

 The replacement of a running process with a new process is

generated by an INTERRUPT

22Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

THREADS

 What most programmers think of when they hear about

“concurrent programming”

 A Thread is an independent task running inside a program

 Shares resources with the main program (and other threads)

 Memory (Program text, Data, Heap)

 Files

 Network connections

 Has its own independent flow of execution

 Thread stack

 Thread program counter

 Thread CPU registers (context)

23Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threads Example
import time
from threading import Thread

def apples(n):
for i in range(n):

print "Apple_%d" % i
time.sleep(1)

def bananas(n):
for i in range(n):

print "Banana_%d" % i
time.sleep(1)

def serial_run(): # Run time = 13 seconds
apples(5)
bananas(8)

def parallel_run(): # Run time = 8 seconds !
t1 = Thread(target=apples, args=(5,))
t2 = Thread(target=bananas, args=(8,))
t1.start()
t2.start()

apples_and_bananas_1.py

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=OS/PROJECTS/PARALLEL_PROGRAMMING_LAB/apples_and_bananas_1.py

24Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

One Process, Many Threads!

TEXT (PROGRAM CODE)

DATA

HEAP (Dynamic Memory)

OPEN FILES TABLE

Program Counter

Stack

THREAD 1

Registers

Program Counter

Stack

THREAD 2

Registers

Program Counter

Stack

THREAD 3

Registers

Program Counter

Stack

THREAD 4

Registers

P
ro

c
e

s
s

 P
a

rt
s

25Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

THREADS
 Several threads within the same process can use and share

 common variables

 common open files

 common networking sockets

26Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Cooperating Threads

stop = False # global variable

def apples(n):
global stop
for i in range(n):

print "Apple_%d" % i
time.sleep(1)

stop = True

def bananas(n):
for i in range(n):

if stop: break
print "Banana_%d" % i
time.sleep(0.5)

def parallel_run(): # What happens here ??
t1 = Thread(target=apples, args=(5,))
t2 = Thread(target=bananas, args=(100,))
t1.start()
t2.start()

apples_and_bananas_2.py

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=OS/PROJECTS/PARALLEL_PROGRAMMING_LAB/apples_and_bananas_2.py

27Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threading Module

 Python threads are defined by a class

 You inherit from Thread and redefine run()

def run(self):
while self.count > 0:

print "%s:%d" % (self.name, self.count)
self.count -= 1
time.sleep(2)

return

This code

executes in

the thread

countdown1.py

28Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Launching a Thread

 To launch a thread: create a thread object and call start()

t1 = CountdownThread(10) # Create the thread object
t2 = CountdownThread(20) # Create another thread
t1.start() # Launch thread t1
t2.start() # Launch thread t2

 Thread executes until their run method stops (return or exit)

countdown1.py

29Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Alternative way to launch threads

import time
from threading import Thread

def countdown(name, count):
while count > 0:

print "%s:%d" % (name, count)
count -= 1
time.sleep(2)

return

t1 = Thread(target=countdown, args=("A", 10))
t2 = Thread(target=countdown, args=("B", 20))
t1.start()
t2.start()

 Creates a Thread object, but its run() method just calls the

countdown function

countdown2.py

30Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Joining a Thread

t = Thread(target=foo, args=(a1,a2))
t.start()
Do some work ...
t.join() # Wait for the thread to exit
Continue your work ...

 Once you start a thread, it runs independently

 Use t.join() to wait for a thread to exit

 This only works from other threads

 A thread can't join itself!

31Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Daemonic Threads

t.daemon = True
t.setDaemon(True)

 If a thread runs forever, make it "daemonic“

 If you don't do this, the interpreter will lock when the main

thread exits - waiting for the thread to terminate (which never

happens)

 Normally you use this for background tasks

32Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Access to Shared Data

 Threads share all of the data in your program

 Thread scheduling is non-deterministic

 Operations often take several steps and might be

interrupted mid-stream (non-atomic)

 Thus, access to any kind of shared data is also non-

deterministic

 (which is a really good way to have your head

explode)

33Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Accessing Shared Data

 Consider a shared object

 And two threads that modify it

 It's possible that the resulting value will be

unpredictably corrupted

x = 0

#Thread 1
x = x + 1

#Thread 2
x = x - 1

34Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Accessing Shared Data
 Is this a serious concern?

 YES! This is a dead serious matter!

 Look what happens in the following example !?

def foo():
global x
for i in xrange(1000000):

x += 1

def bar():
global x
for i in xrange(1000000):

x -= 1

t1 = Thread(target=foo)
t2 = Thread(target=bar)
t1.start()
t2.start() RACE_WARS/race_1.py

35Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

The Therac-25 Accidents
 Machine for radiation therapy

 Software control of electron accelerator and electron beam/Xray

production

 Software control of dosage

 Software errors caused the death of several patients

 A series of race conditions on shared variables and poor

software design

36Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Race Conditions

 The corruption of shared data due to thread

scheduling is often known as a "race condition."

 It's often quite diabolical - a program may produce

slightly different results each time it runs (even

though you aren't using any random numbers!)

 Or it may just flake out mysteriously once every two

weeks

37Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

THREADS – Summary (1)

 Threads are easier to create than processes:

 Threads do not require a separate address space!

 Multithreading requires careful programming!

 Threads share data structures that should only be modified

by one thread at a time! (mutex lock)

 A problem in one thread can

 Cause the parent process to block or crash

 and thus kill all other threads!

 Therefore a lot of caution must be taken so that different

threads don't step on each other!

38Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

THREADS – Summary (2)

 Unlike threads, processes do not share the same address

space and thus are truly independent of each other.

 Threads are considered lightweight because they use far

less resources than processes (no need for a full context

switch)

 Threads, on the other hand, share the same address

space, and therefor are interdependent

 Always remember the golden rules:

 Write stupid code and live longer (KISS)

 Avoid writing any code at all if you don’t have to!

(Bjarn Stroustrup, inventor of C++)

39Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Thread Synchronization

 Identifying and fixing a race condition will make you a

better programmer (e.g., it "builds character")

 However, you'll probably never get that month of your

life back …

 To fix : You have to synchronize threads

 Synchronization Primitives:

 Lock

 Semaphore

 BoundedSemaphore

 Condition

 Event

40Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Mutex Locks
 Probably the most commonly used synchronization primitive

 Mostly used to synchronize threads so that only one thread can

make modifications to shared data at any given time

 Has only two basic operations

from threading import Lock

m = Lock()
m.acquire()
m.release()

 Only one thread can successfully acquire the lock at any given

time

 If another thread tries to acquire the lock when its already in use,

it gets blocked until the lock is released

41Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Use of Mutex Locks

 Commonly used to enclose critical sections

 Only one thread can execute in critical section at a

time (lock gives exclusive access)

42Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Using a Mutex Lock

 It is your responsibility to identify and lock

all "critical sections“ !

43Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Lock Management

 Locking looks straightforward

 Until you start adding it to your code …

 Managing locks is a lot harder than it looks!

 Acquired locks must always be released!

 However, it gets evil with exceptions and other non-linear forms

of control-flow

 Always try to follow this prototype:

44Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Lock and Deadlock

 Avoid writing code that acquires more than one mutex

lock at a time

 This almost invariably ends up creating a program

that mysteriously deadlocks (even more fun to debug

than a race condition)

 Remember Therac-25 …

mx = Lock()
my = Lock()

mx.acquire()
statement using x
my.acquire()
statement using y
my.release()
...
mx.release()

45Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Semaphores

 A counter-based synchronization primitive

 acquire() - Waits if the count is 0, otherwise

decrements the count and continues

 release() - Increments the count and signals

waiting threads (if any)

 Unlike locks, acquire()/release() can be called in any

order and by any thread

from threading import Semaphore
m = Semaphore(n) # Create a semaphore
m.acquire() # Acquire
m.release() # Release

46Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Semaphores Uses

 Resource control: limit the number of threads

performing certain operations such as database

queries, network connections, disk writes, etc.

 Signaling: Semaphores can be used to send

"signals" between threads

 For example, having one thread wake up another

thread.

47Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Resource Control

 Using Semaphore to limit Resource:

 Only 5 threads can execute the get_link function

 This make sure we do not put too much pressure on

networking system

import requests
from threading import Semaphore

sem = Semaphore(5) # Max: 5-threads
def get_link(url):

sem.acquire()
try:

req = requests.get(url)
return req.content

finally:
sem.release()

48Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Thread Signaling

 Using a semaphore to “send a signal”:

 Here, acquire() and release() occur in different

threads and in a different order

 Thread-2 is blocked until Thread-1 releases “sem”.

 Often used with producer-consumer problems

sem = Semaphore(0)

Thread 1
...
statements
statements
statements
sem.release()
...

Thread 2
...
sem.acquire()
statements
statements
statements
...

49Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threads Summary

 Working with all of the synchronization primitives

is a lot trickier than it looks

 There are a lot of nasty corner cases and horrible

things that can go wrong

 Bad performance

 deadlocks

 Starvation

 bizarre CPU scheduling

 etc...

 All are valid reasons to not use threads, unless

you do not have a better choice

50Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threads and Queues

 Threaded programs are easier to manage if they can

be organized into producer/consumer components

connected by queues

 Instead of "sharing" data, threads only coordinate by

sending data to each other

 Think Unix "pipes" if you will...

Thread-1

Producer

Thread-3

Consumer

Thread-2

Consumer

Thread-4

Consumer

Queue

51Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Library Module

 Python has a thread-safe queuing module

 Basic operations

 Usage: Try to strictly adhere to get/put operations. If

you do this, you don't need to use other

synchronization primitives!

52Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Usage

 Most commonly used to set up various forms of

producer/consumer problems

 Critical point : You don't need locks here !!!

(they are already embedded in the Queue object)

53Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Producer Consumer Pattern
import time, Queue
from threading import Thread, currentThread

que = Queue.Queue()

def run_producer():
print "I am the producer"
for i in range(30):

item = "packet_" + str(i) # producing an item
que.put(item)
time.sleep(1.0)

def run_consumer():
print "I am a consumer", currentThread().name
while True:

item = que.get()
print currentThread().name, "got", item
time.sleep(5)

for i in range(10): # Starting 10 consumers !
t = Thread(target=run_consumer)
t.start()

run_producer()
Code:

producer_consumers_que.py

54Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Signaling

 Queues also have a signaling mechanism

 Many Python programmers don't know about this

(since it's relatively new)

 Used to determine when processing is done

55Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Programming

 There are many ways to use queues

 You can have as many consumers/producers as you

want hooked up to the same queue

 In practice, try to keep it simple !

56Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Task Producer

 Can be defined in a function or in a class

 Here is a simple one in a function

Keep producing unlimited number of tasks
Every task is pushed to a task_que

def task_producer(id, task_que):
while True:

a = random.randint(0,100) # random int from 0 to 100
b = random.randint(0,100) # random int from 0 to 100
task = "%d*%d" % (a,b) # multiplication task
time.sleep(3) # 3 sec to produce a task
task_que.put(task)
print "Producer %d produced task: %s" % (id, task)

Code:

producer_consumer_1.py

57Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Worker (consumer)

 Can be defined in a function or in a class

 Here is a simple one in a function

Accepts unlimited number of tasks (from task_que)
It solves a task and puts the result in the result_que.

def worker(id, task_que, result_que):
while True:

task = task_que.get()
t = random.uniform(2,3) # Take 2-3 seconds to complete a task
time.sleep(t)
answer = eval(task)
result_que.put(answer)
print "Worker %d completed task %s: answer=%d" % (id, task, answer)

Code:

producer_consumer_1.py

58Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Simulation: 2 producers, 3 workers

def simulation2():
task_que = Queue()
result_que = Queue()

Two producers
p1 = Thread(target=task_producer, args=(1, task_que))
p2 = Thread(target=task_producer, args=(2, task_que))

Three workers
w1 = Thread(target=worker, args=(1, task_que, result_que))
w2 = Thread(target=worker, args=(2, task_que, result_que))
w3 = Thread(target=worker, args=(3, task_que, result_que))

p1.start()
p2.start()
w1.start()
w2.start()
w3.start()
producers and workers run forever ...

Code: producer_consumer_1.py

59Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Performance Test

Code: threads_perf.py

60Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Performance Test

Code: threads_perf.py

61Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threads Summary (1)

 To understand why this is so and how to make better use of

threads, keep reading David Beazley Paper at:

http://www.dabeaz.com/usenix2009/concurrent/

 Threads are still useful for I/O-bound apps, and do save time in

these situations (which are more common than CPU-bound

apps)

 For example : A network server that needs to maintain several

thousand long-lived TCP connections, but is not doing tons of

heavy CPU processing

 Most systems don't have much of a problem -- even with

thousands of threads

http://www.dabeaz.com/usenix2009/concurrent/

62Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threads Summary (2)

 If everything is I/O-bound, you will get a very quick response

time to any I/O activity

 Python isn't doing the scheduling

 So, Python is going to have a similar response behavior as a C

program with a lot of I/O bound threads

 Python threads are a useful tool, but you have to know how and

when to use them

 I/O bound processing only

 Limit CPU-bound processing to C extensions (that release the

GIL)

 To parallel CPU bound applications use Python’s

multiprocessing module … our next topic

63Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multi Processing

 An alternative to threads is to run multiple

independent copies of the Python interpreter

 In separate processes

 Possibly on different machines

 Get the different interpreters to cooperate by having

them send messages to each other

 Each instance of Python is independent

 Programs just send and receive messages

64Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Message Passing

 Two main issues:

 What is a message?

 What is the transport mechanism?

 A Message is just a bunch of bytes (buffer)

 A "serialized" representation of some data

 Could be done via files, but it’s very slow and volatile

65Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Message Transport

 Pipes

 Sockets

 FIFOs

 MPI (Message Passing Interface)

 XML-RPC (and many others)

66Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 1
 The bc.exe (Berkeley Calculator) performs Math much faster

than Python (think of it as a simple Matlab)

 bc.exe reads from stdin and writes to stdout

 It is included in the parallel programming code bundle

 Here is a bc program to calculate PI from term m to term n:

This is not Python! This is a bc code to
for the Gregory-Leibnitz series for of pi:
pi = 4/1 - 4/3 + 4/5 - 4/7 + ...

define psum(m,n) {
auto i
s=0
for (i=m; i < n; ++i)

s = s + (-1)^i * 4.0/(2*i+1.0)
return (s)

}

67Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 1
import subprocess

code = """

define psum(m,n) {

auto i

s=0

for (i=m; i < n; ++i)

s = s + (-1)^i * 4.0/(2*i+1.0)

return (s)

}

""" # This is code in a totally different language !

Starting a pipe to the bc.exe program

p = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)

Sending code to bc by writing to the Python side of the Pipe

p.stdin.write(code)

p.stdin.write("scale=60\n") # 60 digits precision

p.stdin.write("psum(0,1000000)\n") # Now we do the calculation!

result = p.stdout.readline() # Now we read the result!

p.terminate()

print result

IPC/pipe_to_bc_1.py

68Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 2
 If one sub-process gets us a lot of speed, how about opening

two sub-processes in parallel?

Starting two pipes to the bc.exe program!
p1 = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
p2 = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)

Sending code to bc by writing to the Python side of the Pipe
p1.stdin.write(code)
p2.stdin.write(code)
p1.stdin.write("scale=60\n") # 60 digits precision
p2.stdin.write("scale=60\n")

Now we do the calculation!
Both processes run in parallel in the background !
p1.stdin.write("psum(0,500000)\n") # We divide the task to two parts !
p2.stdin.write("psum(500000, 1000000)\n") # Part 2

result1 = p1.stdout.readline()
result2 = p2.stdout.readline()
p1.terminate()
p2.terminate()
print Decimal(result1) + Decimal(result2)

IPC/pipe_to_bc_2.py

69Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 3
 That worked all right, but if we want to use our 8 CPU cores, we

need to be more prudent!

def bc_worker(a,b):
p = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
p.stdin.write(code)
p.stdin.write("scale=60\n") # 60 digits precision
p.stdin.write("psum(%d,%d)\n" % (a,b))
return p

8 parallel sums of 500K terms chunks ... (total 4M terms)
procs = []
chunk = 500000
for i in range(8):

a = i * chunk
b = (i+1) * chunk
p = bc_worker(a,b)
procs.append(p)

getcontext().prec = 60
result = Decimal("0.0")
for p in procs:

r = p.stdout.readline()
p.terminate()
result += Decimal(r)

IPC/pipe_to_bc_3.py

70Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

The Big Picture
 Can easily have 10s-100s-1000s of communicating Python

interpreters and external programs through pipes and sockets

 However, always keep the “golden rules” in mind …

Python

Python Python

Python

b.exe

Python

f.exe

a.exe

c.exe
e.exe

d.exe

Golden rule: He who has the gold makes the rules

71Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

The Multiprocessing Module
 This is a module for writing concurrent programs based on

communicating processes

 A module that is especially useful for concurrent CPU-bound

processing

 Here's the cool part:

You already know how to us multiprocessing!

 It is exactly as using Threads, just replace “Thread” with

“Process”

 Instead of "Thread" objects, you now work with "Process"

objects

 But! One small difference: you need to use Queue’s for process

communication (or else you have independent processes with

no shared data at all)

72Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multiprocessing Example 1

import time, os
from multiprocessing import Process

print "Parent Process id:", os.getpid()

class CountdownProcess(Process):
def __init__(self, name, count):

Process.__init__(self)
self.name = name
self.count = count

def run(self):
print "Child Process id:", os.getpid()
while self.count > 0:

print "%s:%d" % (self.name, self.count)
self.count -= 1
time.sleep(2)

return

countdownp1.py

 Define tasks using a Process class

 You inherit from Process and redefine run()

73Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multiprocessing Example 1

if __name__ == '__main__':
p1 = CountdownProcess("A", 10) # Create the process object
p1.start() # Launch the process

p2 = CountdownProcess("B", 20) # Create another process
p2.start() # Launch

countdownp1.py

 To launch, same idea as with threads

 You inherit from Process and redefine run()

 Processes execute until run() stops

 critical detail: Always launch in main as shown (or

else your Windows will crash)

74Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multiprocessing Example 2

def countdown(name, count):
print "Process id:", os.getpid()
while count > 0:

print "%s:%d" % (name, count)
count -= 1
time.sleep(2)

return

Sample execution
if __name__ == '__main__':

p1 = Process(target=countdown, args=("A", 10))
p2 = Process(target=countdown, args=("B", 20))

p1.start()
p2.start()

countdownp2.py

 Alternative method of launching processes is by using simple

functions instead of classes

 Creates two Process objects, but their run() method just calls the

countdown function

75Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Does it Work ?

76Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Other Process Features

77Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Distributed Memory

 Unlike Threads, with multiprocessing, there are no

shared data structures, in fact no sharing at all !

 Every process is completely isolated!

 Since there are no shared structures, forget about all

of that locking business

 Everything is focused on messaging

http://fxa.noaa.gov/kelly/ipc/

http://fxa.noaa.gov/kelly/ipc/

78Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipes

79Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 1

 A simple data consumer

From multiprocessing import Process, Pipe

def consumer(p1, p2):
p1.close() # Close producer's end (not used)
while True:

try:
item = p2.recv()

except EOFError:
break

print "Consumer got:", item

pipe_for_producer_consumer.py

 A simple data producer

def producer(outp):
print "Process id:", os.getpid()
for i in range(10):

item = "item" + str(i) # make an item
print "Producer produced:", item
outp.send(item)

80Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 1

 Launching Consumer and Producer

 The consumer runs in a child process

 But the producer runs in the parent process

 Communication is from parent to child

if __name__ == '__main__':
p1, p2 = Pipe()

c = Process(target=consumer, args=(p1, p2))
c.start()

Close the input end in the producer
p2.close()

run_producer(p1)

Close the pipe
p1.close() pipe_for_producer_consumer.py

81Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Message Queues

82Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Implementation

 Queues are implemented on top of pipes

 A subtle feature of queues is that they have a "feeder

thread" behind the scenes

 Putting an item on a queue returns immediately

 Allowing the producer to keep working

 The feeder thread works on its own to transmit data

to consumers

83Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Deadlocks

 Assume Alice wants to transfer money to Bob and at the

same time Bob wants to transfers money to Alice

 Alice's bank grabs a lock on Alice's account, then asks

Bob's bank for a lock on Bob's account

 Bob's bank locked Bob's account and is now asking for a

lock on Alice's account

 Bang! you have a deadlock!

http://www.eveninghour.com/images/online_transfer2.jpg

Code:

DEADLOCK/bank_account_1.py

DEADLOCK/bank_account_2.py

84Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers
 5 philosopher with 5 forks sit around a circular table

 The forks are placed between philosophers

 Each philosopher can be in one of three states:

 Thinking (job is waiting)

 Hungry (job ready to run)

 Eating (job is running)

 To eat, a philosopher must have two forks

 He must first obtain the first fork (left or right)

 After obtaining the first fork he proceeds to obtain the second fork

 Only after having two forks he is allowed to eat

 (The two forks cannot be obtained simultaneously!)

 Analogy: a process that needs to access two resources: a disk and

printer for example

Code: DEADLOCK/dining_philosophers.py

85Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Deadlock
 A Deadlock is a situation in which all 5 philosophers are hungry but

none can eat forever since each philosopher is waiting for a fork to be

released

 Sometimes this situation is called: full starvation

 In operating systems, a philosopher represents a thread or a process

that need access to two resources (like two files or a disc and printer)

in order to proceed

 Operating system puts every process into a device Queue each time it

needs to access a device (disc, memory, or CPU)

Code: DEADLOCK/dining_philosophers.py

Typical deadlock situation:

Each Philosopher grabbed

the left fork and waits for

the right fork

86Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Solution 1
 A philosopher who wants to eat first picks up the salt

shaker on the table

 Assume only one salt shaker exists!

 All other philosophers that do not have the salt

shaker must release their forks

 The philosopher that got the salt shaker picks up his

forks, eats and when finishes must put the salt

shaker back at the table center

 This solution works but is not optimal: only one

philosopher can eat at any given time

 if we further stipulate that the philosophers agree to

go around the table and pick up the salt shaker in

turn, this solution is also fair and ensures no

philosopher starves.

Code: DEADLOCK/dining_philosophers.py

87Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Solution 2
 Each philosopher flips a coin:

 Heads, he tries to grab the right fork

 Tails, he tries to grab the left fork

 If the second fork is busy, release the first fork and

try again

 With probability 1, he will eventually eat

 Again, this solution relies on defeating circular

waiting whenever possible and then resorts to

breaking 'acquiring while holding' as assurance for

the case when two adjacent philosophers' coins both

come up the same.

 Again, this solution is fair and ensures all

philosophers can eat eventually.

Code: DEADLOCK/dining_philosophers.py

88Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Solution 3
 The chef that cooked the meal dictates who should eat and

when to prevent any confusion. This breaks the 'blocking

shared resources' condition.

 The chef assures all philosophers that when they try to pick

up their forks, they will be free!

 Effectively the chef enforces a fair “fork discipline” over the

philosophers

 This is the most efficient solution (no shared

resources/locking involved) but is in practice the hardest to

achieve (the chef must know how to instruct the

philosophers to eat in a fair, interference-free fashion).

 For example, the chef can assign a number to each

philosopher and decide that the following pairs of

philosophers eat at the following order:

(3, 5) -> (1, 4) -> (2, 4) -> (1, 3) -> (5, 2)

 This schedule ensures that each philosopher gets to eat

twice in each round and will neither deadlock nor starve

5

1

2

34

89Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers

Solution 3 Implementation

 A Python program model for the dining philosophers is

coded in the file:

 Based on this code, try to implement a Chef Thread which

monitors the 5 philosophers and solves the problem as

described above

 How to go about solution 2 ?

5

1

2

34

PARALLEL_PROGRAMMING_LAB/DEADLOCK/dining_philosophers.py

90Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Solution 4
 Each philosopher behaves as usual. That is whenever it

gets hungry, he is trying to acquire the two forks as usual

(in whatever order he wants)

 Each Philosopher is assigned a “Hunger Index”

 This is roughly the time that has passed since he last ate

 As soon as the highest Hunger Index rises above a fixed

threshold, the neighbors of this philosopher must release

the forks near the starving philosopher (or complete their

food if they were eating and then release the forks)

 This guarantees that the starving philosopher will get to eat

in a short time.

 Once the starving philosopher is satiated, his “Hunger

Index” drops down below the next starving philosopher

 How would you implement this solution?

Start with the file:
PARALLEL_PROGRAMMING_LAB/DEADLOCK/dining_philosophers.py

43

23

315

13678

