
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Processes

3.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Inter-process Communication

 Examples of IPC Systems

 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a process -- a program in

execution, which forms the basis of all computation

 To describe the various features of processes, including

scheduling, creation and termination, and communication

 To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must progress in
sequential fashion

 A process includes:

 program counter

 stack

 data section [data + heap]

3.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Process vs. Program

 Program is a passive entity

 It usually found on hard drives or magnetic disks

 Process is an active entity

 The action starts when a program file loaded into memory

 Execution of program started via

 GUI event (GUI = Graphic User Interfaces)

 Command line entry of its name (cmd.exe, xterm, putty, …)

 Exec system calls (exec*(), CreateProcess, …)

 One program can start many processes

 Consider 10 instances of FireFox process (10 tabs)

 Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

The Process

 Text section (machine code!!)

 program counter, processor registers

 Data section

 Consists of global and static variables that are initialized by the programmer (like

C++ const/global declarations, Java Final…)

 Does not change at run-time

 Heap

 Dynamic memory, allocated during run time

 data is freed with delete, delete[], or free()

 (this is where memory leaks happen …)

 Stack containing temporary data

 Function arguments

 Return values (usually pointers to structures on the heap)

 local variables (C uses the stack to store local variables)

3.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example

double PI = 3.14159 // data or text?
unsigned int u = 27 // data section
char * str = "No changes allowed"; // data section

int foo()
{
 char *pBuffer; // nothing allocated yet (excluding the pointer itself,
 // which is allocated here on the stack).
 bool b = true; // Allocated on the stack
 if(b)
 {
 long int x, y, z ; // Create 3 longs on the stack! (local vars)
 char buffer[500]; // Create 500 bytes on the stack! (local var)
 pBuffer = new char[500]; // Create 500 bytes on the heap! (array of char objects)

 } // buffer is deallocated here, pBuffer is not!
} // oops there's a memory leak, should have called:
 // delete[] pBuffer;

3.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Process State

During its lifetime, process changes states:

 New The process is being created

 The process has been launched and is loaded to memory

 Ready The process is waiting to be assigned to a processor

 It is in memory and ready to run (scheduling)

 Running Instructions are being executed

 CPU control was given to the process and it now the

 CPU master

 Waiting The process is waiting for some event to occur

 wait for data write, data read, network response, child

 process to finish work, …

 Terminated The process has finished execution

3.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Diagram of Process State

3.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Process Control Block (PCB)

Data structure holding process information

 Process state (ready, waiting, running, …)

 Program counter

 CPU registers

 CPU scheduling information (priority, queues)

 Memory-management information (base, limit)

 Accounting information (run times, reads, writes, …)

 I/O status information (open files tables)

3.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Process Control Block (PCB)

3.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

CPU Switch From Process to Process

Running

Sleeping

P1

Save state to PCB1

Running

P2

Load state from PCB2

Sleeping

Running

Sleeping

Running

Save state to PCB2

Load state from PCB2

Load state from PCB1

Save state to PCB1

OS OS

3.14 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Process Scheduling

 Maximize CPU usage

 Optimize process time sharing by quick switches

 Process scheduler role is to decide among available processes for next

execution on CPU

 Maintains scheduling queues of processes

 Job queue set of all processes in the system

 Ready queue set of all processes residing in main memory

 ready and waiting to execute

 Device queues set of processes waiting for an I/O device (per device)

 Processes migrate among the various queues

3.15 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Process Representation in Linux

 Represented by the C structure task_struct

pid_t pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* memory management info */
struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
/* op=original parent, p=parent, c=youngest child, ys=youngest siebling,

 os=older siebling */

3.23 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Ready Queue And Various

I/O Device Queues

3.24 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Representation of Process Scheduling

Process
is Born

Process
Terminates

3.25 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Schedulers

 Long-term scheduler (or job scheduler)

 Selects which processes should be brought into the ready queue

 Selects which processes be swapped to disk

 Short-term scheduler (or CPU scheduler)

 selects which process will run next

 Sometimes the only scheduler in a system

3.26 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Some tasks are ‘ready-to-run’

Those tasks that are ready-to-run comprise a sub-list of all the tasks,
and they are arranged on a queue known as the ‘run-queue’

Those tasks that are blocked while awaiting a specific event to occur
are put on alternative sub-lists, called ‘wait queues’, associated with
the particular event(s) that will allow a blocked task to be unblocked

run_queue

init_task list

3.27 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Schedulers (Cont.)

 Short-term scheduler is invoked very frequently

 Typically 15-60 milliseconds

 Must be fast!

 Long-term scheduler is invoked very infrequently

 Seconds, minutes, or hours

 Could be slow (disk swap is very slow …)

 Processes that run for days, or even sleep for days but hold large

memory segments. The long-term scheduler may swap them to

disk

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts and long I/O bursts

 CPU-bound process – spends more time doing computations; few very

long CPU bursts

3.44 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Pipes

 Remote Method Invocation (Java)

3.45 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

3.46 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Socket Communication

3.49 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Pipes

 Acts as a conduit allowing two processes to communicate

 Issues

 Is communication unidirectional or bidirectional?

 In the case of two-way communication, is it half or full-

duplex?

 Must there exist a relationship (i.e. parent-child) between the

communicating processes?

 Can the pipes be used over a network?

3.50 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Ordinary Pipes

 Ordinary Pipes allow communication in standard producer-consumer

style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating processes

3.51 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Ordinary Pipes

3.52 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Named Pipes (FIFO)

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the communicating processes

 Several processes can use the named pipe for communication

 Provided on both UNIX and Windows systems

