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Objectives 

 To introduce the notion of a process -- a program in 

execution, which forms the basis of all computation 

 

 To describe the various features of processes, including 

scheduling, creation and termination, and communication 

 

 To describe communication in client-server systems 



3.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition 

Process Concept 

 An operating system executes a variety of programs: 

 Batch system – jobs 

 Time-shared systems – user programs or tasks 

 

 Textbook uses the terms job and process almost interchangeably 

 

 Process – a program in execution; process execution must progress in 
sequential fashion 

 

 A process includes: 

 program counter  

 stack 

 data section [data + heap] 
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Process vs. Program 

 Program is a passive entity 

 It usually found on hard drives or magnetic disks 

 Process is an active entity  

 The action starts when a program file loaded into memory 

 Execution of program started via 

 GUI event (GUI = Graphic User Interfaces) 

 Command line entry of its name (cmd.exe, xterm, putty, …) 

 Exec system calls (exec*(), CreateProcess, …) 

 One program can start many processes 

 Consider 10 instances of FireFox process (10 tabs) 

 Consider multiple users executing the same program 
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Process in Memory 
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The Process 

 Text section (machine code!!) 

 program counter, processor registers 

 Data section 

 Consists of global and static variables that are initialized by the programmer (like 

C++ const/global declarations, Java Final…) 

 Does not change at run-time 

 Heap 

 Dynamic memory, allocated during run time 

 data is freed with delete, delete[], or free() 

 (this is where memory leaks happen …) 

 Stack containing temporary data 

 Function arguments 

 Return values (usually pointers to structures on the heap) 

 local variables (C uses the stack to store local variables) 

 



3.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition 

Example 

double PI = 3.14159   // data or text? 
unsigned int u = 27   // data section 
char * str = "No changes allowed"; // data section 
 
int foo() 
{ 
  char *pBuffer; // nothing allocated yet (excluding the pointer itself, 
                 // which is allocated here on the stack). 
  bool b = true; // Allocated on the stack 
  if(b) 
  { 
    long int x, y, z ;       // Create 3 longs on the stack! (local vars) 
    char buffer[500];        // Create 500 bytes on the stack! (local var) 
    pBuffer = new char[500]; // Create 500 bytes on the heap!  (array of char objects) 
 
   } // buffer is deallocated here, pBuffer is not! 
}    // oops there's a memory leak, should have called: 
     // delete[] pBuffer; 
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Process State 

During its lifetime, process changes states: 

 New  The process is being created 

   The process has been launched and is loaded to memory 

 Ready  The process is waiting to be assigned to a processor 

   It is in memory and ready to run (scheduling) 

 Running Instructions are being executed 

   CPU control was given to the process and it now the 

   CPU master 

 Waiting  The process is waiting for some event to occur 

   wait for data write, data read, network response, child 

   process to finish work, … 

 Terminated The process has finished execution 
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Diagram of Process State 
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Process Control Block (PCB) 

Data structure holding process information 

 Process state (ready, waiting, running, …) 

 Program counter 

 CPU registers 

 CPU scheduling information (priority, queues) 

 Memory-management information (base, limit) 

 Accounting information (run times, reads, writes, …) 

 I/O status information (open files tables) 
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Process Control Block (PCB) 



3.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition 

CPU Switch From Process to Process 
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Process Scheduling 

 Maximize CPU usage 

 Optimize process time sharing by quick switches 

 Process scheduler role is to decide among available processes for next 

execution on CPU 

 Maintains scheduling queues of processes 

 Job queue  set of all processes in the system 

 Ready queue set of all processes residing in main memory 

   ready and waiting to execute 

 Device queues set of processes waiting for an I/O device (per device) 

 Processes migrate among the various queues 
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Process Representation in Linux 

 Represented by the C structure task_struct 
 

pid_t pid;                  /* process identifier */  
long state;                 /* state of the process */  
unsigned int time_slice     /* scheduling information */ 
struct task_struct *parent; /* this process’s parent */ 
struct list_head children;  /* this process’s children */ 
struct files struct *files; /* list of open files */ 
struct mm struct *mm;       /* memory management info */ 
struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr; 
/* op=original parent, p=parent, c=youngest child, ys=youngest siebling, 

      os=older siebling */ 
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Ready Queue And Various  

I/O Device Queues 
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Representation of Process Scheduling 
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Schedulers 

 Long-term scheduler  (or job scheduler) 

 Selects which processes should be brought into the ready queue 

 Selects which processes be swapped to disk 

 

 Short-term scheduler  (or CPU scheduler) 

 selects which process will run next 

 Sometimes the only scheduler in a system 
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Some tasks are ‘ready-to-run’ 

Those tasks that are ready-to-run comprise a sub-list of all the tasks,  
and they are arranged on a queue known as the ‘run-queue’   
 
Those tasks that are blocked while awaiting a specific event to occur 
are put on alternative sub-lists, called ‘wait queues’, associated with 
the particular event(s) that will allow a blocked task to be unblocked  

run_queue 

init_task list 
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Schedulers (Cont.) 

 Short-term scheduler is invoked very frequently 

 Typically 15-60 milliseconds 

 Must be fast! 

 Long-term scheduler is invoked very infrequently 

 Seconds, minutes, or hours 

 Could be slow (disk swap is very slow …) 

 Processes that run for days, or even sleep for days but hold large 

memory segments. The long-term scheduler may swap them to 

disk 

 Processes can be described as either: 

 I/O-bound process – spends more time doing I/O than computations, 

many short CPU bursts and long I/O bursts 

 CPU-bound process – spends more time doing computations; few very 

long CPU bursts 
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Communications in Client-Server Systems 

 Sockets 

 

 Remote Procedure Calls 

 

 Pipes 

 

 Remote Method Invocation (Java) 
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Sockets 

 A socket is defined as an endpoint for communication 

 

 Concatenation of IP address and port 

 

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8 

 

 Communication consists between a pair of sockets 
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Socket Communication 
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Pipes 

 Acts as a conduit allowing two processes to communicate 

 

 Issues 

 Is communication unidirectional or bidirectional? 

 In the case of two-way communication, is it half or full-

duplex? 

 Must there exist a relationship (i.e. parent-child) between the 

communicating processes? 

 Can the pipes be used over a network? 
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Ordinary Pipes 

 Ordinary Pipes allow communication in standard producer-consumer 

style 

 

 Producer writes to one end (the write-end of the pipe) 

 

 Consumer reads from the other end (the read-end of the pipe) 

 

 Ordinary pipes are therefore unidirectional 

 

 Require parent-child relationship between communicating processes 
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Ordinary Pipes 
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Named Pipes (FIFO) 

 Named Pipes are more powerful than ordinary pipes 

 

 Communication is bidirectional 

 

 No parent-child relationship is necessary between the communicating processes 

 

 Several processes can use the named pipe for communication 

 

 Provided on both UNIX and Windows systems 


