Processes

Operating System Concepts — 8™ Edition Silberschatz, Galvin and Gagne ©2009

Processes

Process Concept

Process Scheduling
Operations on Processes
Inter-process Communication
Examples of IPC Systems

Communication in Client-Server Systems

Operating System Concepts — 8t Edition 3.2 Silberschatz, Galvin and Gagne ©2009

mbni

ODbjectives

B To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

B To describe the various features of processes, including
scheduling, creation and termination, and communication

B To describe communication in client-server systems

Operating System Concepts — 8t Edition 3.3 Silberschatz, Galvin and Gagne ©2009

.

S Process Concept

B An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks

B Textbook uses the terms job and process almost interchangeably

B Process — a program in execution; process execution must progress in
sequential fashion

m A process includes:
e program counter
e stack
e data section [data + heap]

Operating System Concepts — 8t Edition 3.4 Silberschatz, Galvin and Gagne ©2009

> Process vs. Program

B Program is a passive entity

e It usually found on hard drives or magnetic disks

B Process is an active entity
e The action starts when a program file loaded into memory

B Execution of program started via
e GUI event (GUI = Graphic User Interfaces)
e Command line entry of its name (cmd.exe, xterm, putty, ...)
e EXxec system calls (exec*(), CreateProcess, ...)

B One program can start many processes
e Consider 10 instances of FireFox process (10 tabs)
e Consider multiple users executing the same program

Operating System Concepts — 8t Edition 3.5 Silberschatz, Galvin and Gagne ©2009

Process in Memory

max
stack

heap

data

text

Operating System Concepts — 8" Edition 3.6 Silberschatz, Galvin and Gagne ©2009

- mahi

5 The Process

B Text section (machine codel!!)
B program counter, processor registers
m Data section

e Consists of global and static variables that are initialized by the programmer (like
C++ const/global declarations, Java Final...)

e Does not change at run-time ot
m Heap

e Dynamic memory, allocated during run time l

e data is freed with delete, delete[], or free()

e (this is where memory leaks happen ...) i
B Stack containing temporary data TEEL

e Function arguments data

e Return values (usually pointers to structures on the heap) .

e local variables (C uses the stack to store local variables)

Operating System Concepts — 8t Edition 3.7 Silberschatz, Galvin and Gagne ©2009

B
A,ma.i
s

~:$ ot

Example

double PI = 3.14159 // data or text?
unsigned int u = 27 // data section

char * str = "No changes allowed"; // data section
int foo()
{

char *pBuffer; // nothing allocated yet (excluding the pointer itself,
// which is allocated here on the stack).
bool b = true; // Allocated on the stack

if(b)

{
long int x, y, z ; // Create 3 longs on the stack! (local vars)
char buffer[500]; // Create 500 bytes on the stack! (local var)

pBuffer = new char[500]; // Create 500 bytes on the heap! (array of char objects)
} // buffer is deallocated here, pBuffer is not!

} // oops there's a memory leak, should have called:
// delete[] pBuffer;

Operating System Concepts — 8t Edition 3.8 Silberschatz, Galvin and Gagne ©2009

‘/“A,ﬁ\"’."“!‘»i
(R $ r‘/

Process State

During its lifetime, process changes states:

E New The process is being created
The process has been launched and is loaded to memory

B Ready The process is walting to be assigned to a processor
It is In memory and ready to run (scheduling)

B Running Instructions are being executed
CPU control was given to the process and it now the
CPU master

B Waiting The process is waiting for some event to occur

wait for data write, data read, network response, child
process to finish work, ...

B Terminated The process has finished execution

Operating System Concepts — 8t Edition 3.9 Silberschatz, Galvin and Gagne ©2009

Diagram of Process State

o admitted interrupt exit

scheduler dispatch

I/O or event completion I/O or event wait

Operating System Concepts — 8" Edition 3.10 Silberschatz, Galvin and Gagne ©2009

R

a
o o..i

a2

& Process Control Block (PCB)

Data structure holding process information

B Process state (ready, waiting, running, ...)

B Program counter

B CPU registers

B CPU scheduling information (priority, queues)

B Memory-management information (base, limit)

B Accounting information (run times, reads, writes, ...)
m |/O status information (open files tables)

Operating System Concepts — 8t Edition 3.11 Silberschatz, Galvin and Gagne ©2009

4] Process Control Block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

Operating System Concepts — 8t Edition 3.12 Silberschatz, Galvin and Gagne ©2009

CPU Switch From Process to Process

Pl P2
Running Sleeping -
Save state to PCB1 - Load state from PCB2
Sleeping Running
_/ Load state from PCB1 ! Save state to PCB2
RUNNing Sleeping
Save state to PCB1 :/>| Load state from PCB2
M Running v

Operating System Concepts — 8t Edition 3.13 Silberschatz, Galvin and Gagne ©2009

,‘
r)ﬁy

o
\.,% ‘P- d

Process Scheduling

®m Maximize CPU usage
B Optimize process time sharing by quick switches

B Process scheduler role is to decide among available processes for next
execution on CPU

B Maintains scheduling queues of processes
e Job queue set of all processes in the system

e Ready queue set of all processes residing in main memory
ready and waiting to execute

e Device queues set of processes waiting for an I/O device (per device)
B Processes migrate among the various queues

Operating System Concepts — 8t Edition 3.14 Silberschatz, Galvin and Gagne ©2009

- x(".""b».,i
-

~:$ ot

Process Representation in Linux

® Represented by the C structure task_struct

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */

struct list _head children; /* this process’s children */

struct files struct *files; /* list of open files */

struct mm struct *mm; /* memory management info */

struct task struct *p_opptr, *p pptr, *p_cptr, *p ysptr, *p osptr;

/* op=original parent, p=parent, c=youngest child, ys=youngest siebling,
os=older siebling */

£ e N

slnuct task siruct slruct task_sbruct struct task_struct
prCEss inmormation prisCEss informetion - pracEss informaion
]]]

L T. LN

current
[cumantly axaculing procsess)

Operating System Concepts — 8t Edition 3.15 Silberschatz, Galvin and Gagne ©2009

(S Ready Queue And Various
/O Device Queues

queue header PCB, PCB,
ready head >
queue tail N registers registers
L J k=3
° @
: / hd
mag head +——
tape - -
unit O tail T =
tmag head +——=
ape
uni$1 tail N 5 PCB, PCB,, PCBg
/ N
disk head 4
unit O tail .\
PCBs
terminal head —T—> =
unit 0 |
Operating System Concepts — 8" Edition 3.23 Silberschatz, Galvin and Gagne ©2009

)

& /,.,/ . .
-’ Representation of Process Scheduling
Process $roce_ss t
is Born erminates
: ready queue @) >
/O /O queue «— |/O request E—
time slice E
expired
child fork a
@- child
iInterrupt wait for an E
occurs interrupt

Operating System Concepts — 8t Edition 3.24 Silberschatz, Galvin and Gagne ©2009

o
\.,% ‘P- d

Schedulers

B Long-term scheduler (or job scheduler)
e Selects which processes should be brought into the ready queue
e Selects which processes be swapped to disk

B Short-term scheduler (or CPU scheduler)
e selects which process will run next
e Sometimes the only scheduler in a system

Operating System Concepts — 8t Edition 3.25 Silberschatz, Galvin and Gagne ©2009

Some tasks are ‘ready-to-run’

init_task list

run_queue

Those tasks that are ready-to-run comprise a sub-list of all the tasks,
and they are arranged on a queue known as the ‘run-queue’

Those tasks that are blocked while awaiting a specific event to occur

are put on alternative sub-lists, called ‘wait queues’, associated with
the particular event(s) that will allow a blocked task to be unblocked

Operating System Concepts — 8" Edition 3.26 Silberschatz, Galvin and Gagne ©2009

A’”m“i

Schedulers (Cont.)

m Short-term scheduler is invoked very frequently
e Typically 15-60 milliseconds
e Must be fast!

B Long-term scheduler is invoked very infrequently
e Seconds, minutes, or hours
e Could be slow (disk swap is very slow ...)

B Processes that run for days, or even sleep for days but hold large
memory segments. The long-term scheduler may swap them to
disk

B Processes can be described as either:

e |/O-bound process — spends more time doing I/O than computations,
many short CPU bursts and long 1/O bursts

e CPU-bound process — spends more time doing computations; few very
long CPU bursts

Operating System Concepts — 8t Edition 3.27 Silberschatz, Galvin and Gagne ©2009

Communications in Client-Server Systems

B Sockets

B Remote Procedure Calls

B Pipes

B Remote Method Invocation (Java)

Operating System Concepts — 8t Edition 3.44 Silberschatz, Galvin and Gagne ©2009

Sockets

B A socket is defined as an endpoint for communication

m Concatenation of IP address and port

B The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

®m Communication consists between a pair of sockets

Operating System Concepts — 8t Edition 3.45 Silberschatz, Galvin and Gagne ©2009

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

Operating System Concepts — 8" Edition 3.46 Silberschatz, Galvin and Gagne ©2009

A’”m“i

Pipes

B Acts as a conduit allowing two processes to communicate

B |ssues
e |s communication unidirectional or bidirectional?

e |n the case of two-way communication, is it half or full-
duplex?

e Must there exist a relationship (i.e. parent-child) between the
communicating processes?

e Can the pipes be used over a network?

Operating System Concepts — 8t Edition 3.49 Silberschatz, Galvin and Gagne ©2009

o
\.,% ‘P- d

Ordinary Pipes

B Ordinary Pipes allow communication in standard producer-consumer
style

B Producer writes to one end (the write-end of the pipe)
B Consumer reads from the other end (the read-end of the pipe)
B Ordinary pipes are therefore unidirectional

B Require parent-child relationship between communicating processes

Operating System Concepts — 8t Edition 3.50 Silberschatz, Galvin and Gagne ©2009

Ordinary Pipes

parent child
fd(0) fd(1) fd(0) fd(1)

‘ |
Q;J

Yy
T

Operating System Concepts — 8" Edition 3.51 Silberschatz, Galvin and Gagne ©2009

4

y)

 —
7

o Named Pipes (FIFO)

®m Named Pipes are more powerful than ordinary pipes

® Communication is bidirectional

® No parent-child relationship is necessary between the communicating processes
B Several processes can use the named pipe for communication

® Provided on both UNIX and Windows systems

Operating System Concepts — 8t Edition 3.52 Silberschatz, Galvin and Gagne ©2009

