BASIC COMPUTER
ORGANIZATION

_:’.’;‘(‘T;%. oy |~'\"“:?n@
N

Operating System Concepts — 8" Edition Silberschatz, Galvin and Gagne ©2009

\n';;,,—/

Topics

m CPU Structure

m Registers

® Memory Hierarchy (L1/L2/L3/RAM)
® Machine Language

m Assembly Language

® Running Process

Operating System Concepts — 8" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

—

i -/

CPU - Central Processing Unit
Roughly on 1 cm? 0000 n

500 to 1000 pins (input/output/control and power)

Recent CPU’s have 4.5 bhillion transistors! (on 1 cm?2!)
L1/L2/L3 Cache size ~ 256K/1MB/6MB (L1/L2 inside CPU)
RAM ~ 4GB to 128GB (out of CPU)

Pins connected to buses that travel across the system
board to other devices (disk controllers, graphic cards, ...)

m Registers: special memory units inside the chip with
fastest access time.
Types: 16bit, 32bit, 64bit registers
Number: 16 to 128 registers on chip

0 0 0 0 0
uguguougodd

® Important Registers:

e Program counter (PC): holds a pointer to current command in
the running program (in RAM)

e Instruction Register (IR): holds the currently running instruction
e Accumulator

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html
Operating System Concepts — 8" Edition 3.3 Silberschatz, Galvin and Gagne ©2009

=
(Oroyioy

CPU — Central Processing Unit
® Machine Code: N NN NN

e First loaded to RAM and then fetched to CPU CACHE (by
pages, not all program!)

e Machine instruction length is usually 16bit, 32bit, and even up to
128bit

e At each step an instruction is loaded to the Instruction Register

(-
c
(IR), decoded and executed (=
(=
(=

® ALU - Arithmetic Logic Unit:
e Performs all the mathematical calculations of the CPU

uguuouuud

e The ALU can add, subtract, multiply, divide, and perform a host
of other calculations on binary numbers Bitnde] Walhege AWome

m Control Unit: g uuuu

e this component is responsible for directing the flow of
instructions and data within the CPU

e The Control Unit is actually built of many selection circuits such
as decoders and multiplexors

e In the diagram above, the Decoder and the Multiplexor compose
the Control Unit

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

Operating System Concepts — 8" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

http://en.wikipedia.org/wiki/Processor_register
http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html
http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

__f™

xv.':)('/

Computer System BUSES

The information highway for the CPU Graphic Card

Buses are bundles of bits that carry data Monitor connector

between components
The three most important buses are:

Address Bus (32-64 bit)
Used to specify a physical address. The processor or o
DMA-enabled device needs to read or write to a memory Bridge
location, it specifies that memory location on the address
bus (the value to be read or written is sent on the data
bus). The width of the address bus determines the amount
of memory a system can address. For example, system
with a 32-bit address bus can address 2732 (4 GB) bytes.

m Data Bus (8-64 bits)
allows data flow in both directions

m Control Bus
carries commands from the CPU and returns status
signals from devices. Example: if the data is being read or
written to the device the appropriate line (read or write)
will be active (0/1 bit).

Frontside Bus

network/sound/modem/t\i/flash cards

http://testbench.in/introduction to pci express.html

Operating System Concepts — 8" Edition 3.5 Silberschatz, Galvin and Gagne ©2009

__ ¥

xv.':)('/

Read/Write BUS Control

® To send or receive data, a device must acquire Graphic Card
control of the bus from the CPU —

® It may wait on a queue, and when the cpu grants
control proceeds as follows:

B To send data x to a device y it needs to
e Put x on data bus

Frontside Bus.

e Put an address on address bus
e Send a write signal thru control bus

ATA Bus

m All devices are listening but only the targeted device
will copy the data and send a received signal after
read (thru the control bus)

network/sound/mo&em/tv/flash cards
Control

Address
Data

| CPU | |Memory| | Hard disks | | CD-ROM | | Network | | Displayl

www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt

Operating System Concepts — 8" Edition 3.6 Silberschatz, Galvin and Gagne ©2009

http://computer.howstuffworks.com/graphics-card1.htm
http://testbench.in/introduction_to_pci_express.html
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt

__{f™

kx;"/

DMA - Direct Memory Access

® The CPU is too expensive to be engaged with slow
I/O transfers:

e Atypical CPU operates at several GHz (i.e., several
1079 instructions per second)

e Atypical hard disk has a rotational speed of 7200
revolutions per minute for a half-track rotation time of
4ms

e Thisis 4 million times slower than the processor!

® [nstead the CPU initiates a transfer with the DMA,
does other operations while the transfer is in
progress, and receives an interrupt from the DMA 3
controller when the operation is done LAN Adapter

System Bus

B So in effect, the DMA is a mini-controller that works

for the CPU and does I/O transfer jobs for it ﬂo ey
Some systems contain several DMA’s Bponson bus - —gg > O
DMA is also used for “memory to memory” copying in

multi-core processors

® Hardware systems such as disk drives, graphic
network and sound cards use the DMA for passing
data around

http://support.novell.com/techcenter/articles/ana19950501.html

Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

.

kx;"/

DMA - Direct Memory Access (1)

m The CPU programs the DMA controller by writing to its registers the addresses and
operation codes (what to transfer and to where?)

m [t also issues a command to the disk controller telling it to read data from the disk into its
internal buffer and verify the checksum

When valid data are in the disk controller’s buffer, DMA can begin

The DMA controller initiates the transfer by issuing a read request over the bus to the
disk controller

® The disk controller does not know or care whether it came from the CPU or from a DMA
controller

@, Drive

1.CPU

programs DMA Disk
CPU theDMA controller controller
controller ——Buffer
rd ™
4. Ack
) T~

Main
memory

4 Il 1 4
Interrupt when 2. DMA requests
done transfer to memory

http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html
Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

l 3. Data transferred I |

<—Bus

http://en.wikipedia.org/wiki/Interrupt
http://support.novell.com/techcenter/articles/ana19950501.html
http://support.novell.com/techcenter/articles/ana19950501.html
http://support.novell.com/techcenter/articles/ana19950501.html
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html

('
Sy

DMA - Direct Memory Access (2)

® The memory address to write to is on the address bus, so when the disk controller
fetches the next word from its internal buffer, it knows where to write it

The write to memory is another data bus cycle

When the write is complete, the disk controller sends an acknowledgement signal to the
DMA over the control bus

® The DMA controller then increments the memory address to use and decrements the
byte count - this goes on until the byte count reaches 0

The DMA controller interrupts the CPU to let it know that the transfer is now complete
When the operating system resumes, it does not have to copy the disk block to memory;

s Drive
it is already there -~
1.CPU
programs DMA Disk Main
CPU the DMA controller controller memory
controller kzﬂuﬁer
L—
1 ™
4. Ack
) —~
+ I } ‘
Interrupt when 2. DMA requests | I
done transfer to memory 3. Data transferred
<—Bus
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT. html
Operating System Concepts — 8" Edition 3.9 Silberschatz, Galvin and Gagne ©2009

=
(Oroyioy

Process in Memory

max
stack

heap

data

text

Operating System Concepts — 8" Edition 3.10 Silberschatz, Galvin and Gagne ©2009

http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html

& ,”/

How Program looks in Disk or Memory

011001111100010101010011001000100111111010000110100000000010011001101000100110111111001100101010
111000110100110101010100011010000111100010011101000111000101100111101110001101101100010000101110
010010010100001000010111010001100011110101111111000101011010010010110100000101000010101100011001
101001111000001101101000111011011110111010101110000110011100100011000100010111110111011001000111
111111001010001110101100000010000000111000100101010110111110111101111101001010110101111100111000
000010011110100111001010111111111100111010111100011101110111111110011110110100011010101010110010
111111011011010010000000100001001100011001111100000100110011111111111111100010011000110101101011
101110111100010110111111011111001011111110110000010001111110011010001111101001110001101100001110
010111000110101110100011100000011011001111000100010110100001101010000001101010010100111111001011
110111011110011000010: = - - 1

oiio1011010100101120. RAM IS really a 1-dimensiona array!

101110001100110111011¢(

oioo11000110011100010: §0 you should think of RAM as a very

101101111011010110010¢(
110100001010100011010: [
111011100001011000110: Iarge c array'
001011111010110001001:

100100010111011001001(

101100010010100100100: *

110000000001010101011(294967296
110001000011101011100(byte m e m o ry [4

000000011001001100110:

001011101100111111100(

100000011001010010000(

110110011101010011011: Where 4GB = 4294967296 (but could be larger!)
1111100111111011100110UUULLIUVUULLILIIUULLIVUIVLIVLIULULIULIUVUULIUUULUUUULLIULULULLILIIULLIULULIULLLILIUUUULL
110011000010100000110011011000011100101001100001001110111100001011001110111000001010011101111110
011010111001111001001001000001011110110011111111100101100001110100001011010011000011001110111010
101011011011000100000110011011100101100111101000000100111001110010001010001001110101100110010011
101011001111100101011000000011011100010100100111101111100110110011101111100011101010011010011011
101101001000110111111101001100001001011100010000111110111000110110011110011111100000010110111111

This is a two-dimensional view, but in memory or disk it is really 1-dimensional!

Operating System Concepts — 8" Edition 3.11 Silberschatz, Galvin and Gagne ©2009

L7

Example

double PI = 3.14159 // data section
unsigned int u = 27 // data section

char * str = "No changes allowed"; // data section
int foo()
{

char *pBuffer; // nothing allocated yet (excluding the pointer itself,
// which is allocated here on the stack).
bool b = true; // Allocated on the stack

if(b)

{
long int x, y, z ; // Create 3 longs on the stack! (local vars)
char buffer[500]; // Create 500 bytes on the stack! (local var)

pBuffer = new char[500]; // Create 500 bytes on the heap! (array of char objects)

} // buffer is deallocated here, pBuffer is not!
} // oops there's a memory leak, should have called:
// delete[] pBuffer;
// new operator always uses the heap ! Why? Think of WinWord.exe reading a doc ..

Operating System Concepts — 8" Edition 3.12 Silberschatz, Galvin and Gagne ©2009

(Oroyioy

- 'High code = Assembly = Machine Code

. temp =v[k]: TEMP = ¥(K)
High-level Language vkl =v[k+]; V(K) = V(K+)
vlk+1] =temp; ViK+1)=TEMP
C/Java Compiler @ @Fonran Compiler
Iw Sto, ({$2)
Assembly Language w Stl, 4(52)
sw Stl, (52)
sw Sth, 4(%2)
@ MIPS Assembler
0000 1001 1100 0110 1010 1111 0101 1000

Machine L 1010 1111 0101 1000 0000 1001 1100 0110
achine Language 1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

http://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html

Operating System Concepts — 8" Edition 3.13 Silberschatz, Galvin and Gagne ©2009

~
Sy

C code = Assembly = Machine Code

C code: c = atb a, b, c variables in C language

Assembly (MIPS): add $8, $17, $18 Add the contents of CPU registers
$17 and $18 and put the result in

register $8
Machine Code: 00000010001100100100000000100000
Decoder:
000000 10001 10010 01000 00000 100000
add regl7? regl8 reg8 shamt funct

1. The C language has no limit on humber of variables but the MIPS
Architecture has only 32 registers available

2. So we may have 700 C variables but the assembler will have to manage
all of them with only 32 registers!

3. Every MIPS machine instruction has 32 bits length

Operating System Concepts — 8" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

http://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html
http://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html
http://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html

—

[L/

Machine Code Structure (MIPS R-Type)

000000 10001 10010 01000 00000 100000 32 bits instruction
OPCODE RD RS RT SHAMT FUNCT meaning

OPCODE Basic Operation Code 6 bits

RS First Source Register (operand) 5 bits

RT Second Source Register (operand) 5 bits

RD Destination Register (operand) 5 bits

SHAMT Shift Amount 5 bits

FUNCT Specific Functionality 6 bits

- MIPS has 32 registers, so 5 bits are enough to address them all

- FUNCT is used to select a specific variant of the operation code

- OPCODE has exactly 6 bits, which means that we can have at most
63 operations in our language ... could be risky ...?

- MIPS has more instruction types different from the above!

Operating System Concepts — 8" Edition 3.15 Silberschatz, Galvin and Gagne ©2009

[L/

Machine Code Structure (MIPS R-Type)

MIPS32 Add Immedlate Instructlon

-00001 00010 0000000101011110

OP Code Addrl Addr2 Immedlate vaJue

S—}

Equivalent mnemonic: addi

http://en.wikipedia.org/wiki/File:Mips32 addi.svg

R1 = R2 + Immediate_Value

Operating System Concepts — 8" Edition 3.16 Silberschatz, Galvin and Gagne ©2009

http://en.wikipedia.org/wiki/File:Mips32_addi.svg
http://en.wikipedia.org/wiki/File:Mips32_addi.svg
http://en.wikipedia.org/wiki/File:Mips32_addi.svg

"

(Oroyioy

- More Example of Assembly Instructions

sub $8, $5, $1 Subtract the contents of CPU registers $5 and $1
and store the result in register $8
Exactly as in: $8 = $5 - $1
In C language, a = b-c can be compiled to such
instruction

1w $17, 101 ($8) Load word from memory address $8+101 to register $17
The number €101’ is called the ‘offset’ and the
memory address stored in register $8 is called the
‘base register’ and the address it stores is called
‘base address’. This type of instructions is useful
for scanning C arrays (the base address is the array
pointer and the offset runs from @ to n-1)

sw $4, 1010 ($9) Store word from memory address $4 to memory address
$9+1010. The number €1010° is called the ‘offset’
and the memory address stored in register $9
is called the ‘base address’ (register $9 is called
the ‘base register’)

Operating System Concepts — 8" Edition 3.17 Silberschatz, Galvin and Gagne ©2009

—

(Oroyioy

C to Assembly Example

C program for (i=0; i<100; i++)
A is an array of size 100 A[i] = A[i] + 127

Assembly program
MIPS R2000
Before foo: register $1 points to address A[0], $2=127, $4=100 \
foo: 1w $3, 0($1) # load A[i] from $1 to $3

add $3, $2, $3 # A[1] = A[i] + 127

sw $3, 0(%$1) # store A[i]

addi $1, $1, 1 #i=1+1

bne $1, $4, foo # if i != 100, continue at “foo",

otherwise at next instruction

Addi = Add immediate value (direct in instruction, not thru register)

bne branch not equal: if registers not equal jump to label (foo)

else continue to next instruction

Operating System Concepts — 8" Edition 3.18 Silberschatz, Galvin and Gagne ©2009

"

(Oroyioy

Machine Code: I-type instruction format

100011 01001 01000 ©0000011111010000 32 bits instruction
1w $9 $8 2000 Semantics

1w Load Word OPCODE 6 bits

$9 Register 9 5 bits

$8 Register 8 5 bits

2000 Offset from address $8 16 bits

- Instruction type is determined by opcode (first 6 bits)
- Note that offset has room for 16 bits only, so maximal offset
value is 2**16-1 = 65535

Operating System Concepts — 8" Edition 3.19 Silberschatz, Galvin and Gagne ©2009

—

(Oroyioy

More Info on MIPS and x86/amdo64

B To get more information on MIPS here is a very short summary of all the
MIPS language:
A Minimalistic Introduction to MIPS Instruction
http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm

m This MIPS reference is barely 5 pages !
(Simplicity is the ultimate sophistication ... -Leonardo Da Vinci)

m If you want, here is a full reference to Intel® 64 and I1A-32 Architectures
Software Developer's Manual (3289 pages!)
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/6
4-ia-32-architectures-software-developer-manual-325462.pdf
Highly complex ...

Operating System Concepts — 8" Edition 3.20 Silberschatz, Galvin and Gagne ©2009

10

http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm
http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm
http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm
http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

=
(Oroyioy

CPU/Memory View of the Program

32 bits

01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010

The CPU has a very specific view of the program

32 bits

First, the binary data is viewed as a sequence of 32 bits instructions
Second, these instructions are grouped into pages of (usually 4K) instructions

32 bits

01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110

01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110

A program like Microsoft Word which can reach 35 MB size (with DLL's) may get to 9000 pages.
The modern CPU has large caches for storing many pages at the CPU itself and thus save a lot
of time (the long journey to main memory is very expensivel!)
L1 ~ 64 pages, L2 ~ 256 pages, L3 ~ 2048 pages

Operating System Concepts — 8" Edition

3.21

Silberschatz, Galvin and Gagne ©2009

