Processes

B i YT

'T Fo
A

Operating System Concepts — 8" Edition Silberschatz, Galvin and Gagne ©2009

—

\n';;,,—/

Processes

Process Concept

Process Scheduling
Operations on Processes
Inter-process Communication
Examples of IPC Systems

Communication in Client-Server Systems

Operating System Concepts — 8" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

Objectives

B To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

®m To describe the various features of processes, including
scheduling, creation and termination, and communication

B To describe communication in client-server systems

Operating System Concepts — 8" Edition 3.3 Silberschatz, Galvin and Gagne ©2009

v

> Process Concept

An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks

Textbook uses the terms job and process almost interchangeably

Process — a program in execution; process execution must progress in
sequential fashion

A process includes:
e program counter
e stack
e data section [data + heap]

Operating System Concepts — 8" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

—

44 Process vs. Program

® Program is a passive entity
e |t usually found on hard drives or magnetic disks
B Process is an active entity
e The action starts when a program file loaded into memory

®m Execution of program started via
e GUI event (GUI = Graphic User Interfaces)
e Command line entry of its name (cmd.exe, xterm, putty, ...)

e Exec system calls (exec*(), CreateProcess, ...)

® One program can start many processes
e Consider 10 instances of FireFox process (10 tabs)
e Consider multiple users executing the same program

Operating System Concepts — 8" Edition 3.5 Silberschatz, Galvin and Gagne ©2009

p—
[L/

Process in Memory

max
stack

heap

data

text

Operating System Concepts — 8" Edition 3.6 Silberschatz, Galvin and Gagne ©2009

v

57 The Process

B Text section (machine code!!)
program counter, processor registers
Data section

e Consists of global and static variables that are initialized by the programmer (like
C++ const/global declarations, Java Final...)

e Does not change at run-time b

® Heap
e Dynamic memory, allocated during run time l
e data is freed with delete, delete]], or free()
e (this is where memory leaks happen ...) T

m Stack containing temporary data e
e Function arguments data
e Return values (usually pointers to structures on the heap) -
e local variables (C uses the stack to store local variables)

Operating System Concepts — 8% Edition 3.7 Silberschatz, Galvin and Gagne ©2009

e
v’

Example

double PI = 3.14159 // data or text?
unsigned int u = 27 // data section
char * str = "No changes allowed"; // data section

int foo()
{
char *pBuffer; // nothing allocated yet (excluding the pointer itself,
// which is allocated here on the stack).
bool b = true; // Allocated on the stack

if(b)

{
long int x, y, z ; // Create 3 longs on the stack! (local vars)
char buffer[500]; // Create 500 bytes on the stack! (local var)

pBuffer = new char[500]; // Create 500 bytes on the heap! (array of char objects)
} // buffer is deallocated here, pBuffer is not!

} // oops there's a memory leak, should have called:
// delete[] pBuffer;

Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

—

[L/

Process State

During its lifetime, process changes states:

® New The process is being created
The process has been launched and is loaded to memory

B Ready The process is waiting to be assigned to a processor
Itis in memory and ready to run (scheduling)

® Running Instructions are being executed
CPU control was given to the process and it now the
CPU master

® Waiting The process is waiting for some event to occur

wait for data write, data read, network response, child
process to finish work, ...

B Terminated The process has finished execution

Operating System Concepts — 8" Edition 3.9 Silberschatz, Galvin and Gagne ©2009

—

[L/

Diagram of Process State

admitted

interrupt exit terminated

1/0O or event completion scheduEer dispaler) I/O or event wait

Operating System Concepts — 8" Edition 3.10 Silberschatz, Galvin and Gagne ©2009

—

[L/

Process Control Block (PCB)

Data structure holding process information
Process state (ready, waiting, running, ...)
Program counter
CPU registers

Memory-management information (base, limit)

i
B

B

® CPU scheduling information (priority, queues)

B

® Accounting information (run times, reads, writes, ...)
i

I/O status information (open files tables)

Operating System Concepts — 8" Edition 3.11 Silberschatz, Galvin and Gagne ©2009

—

[L/

Process Control Block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

Operating System Concepts — 8" Edition 3.12 Silberschatz, Galvin and Gagne ©2009

—

[L/

CPU Switch From Process to Process

P1 P2
Running Sleeping =
Save state to PCB1 ‘ ',/—ﬁ Load state from PCB2
Sleeping E Running
E/’ Load state from PCB1 ‘ /,/r{ Save state to PCB2 ‘
Running Sleeping =
Save state to PCB1 ‘ :,/af Load state from PCB2 ‘
E Running
Operating System Concepts — 8" Edition 3.13 Silberschatz, Galvin and Gagne ©2009

p—
[L/

Process Scheduling

Maximize CPU usage
Optimize process time sharing by quick switches

Process scheduler role is to decide among available processes for next
execution on CPU

B Maintains scheduling queues of processes
e Job queue set of all processes in the system

e Ready queue set of all processes residing in main memory
ready and waiting to execute

e Device queues set of processes waiting for an 1/0 device (per device)
B Processes migrate among the various queues

Operating System Concepts — 8" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

Process Representation in Linux

® Represented by the C structure task_struct

pid_t pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */

struct list_head children; /* this process’s children */

struct files struct *files; /* list of open files */

struct mm struct *mm; /* memory management info */

struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;

/* op=original parent, p=parent, c=youngest child, ys=youngest siebling,
os=older siebling */

AT W

Elnuct task_struct S1ruct task_siruct Struct task_struct
process infarmation process infarmation - process informason
- - -

- - -

s t S w
rrent
[currantly exaculing precoess)

Operating System Concepts — 8" Edition 3.15 Silberschatz, Galvin and Gagne ©2009
EN B
o Ready Queue And Various

&v.';;/',

I/O Device Queues

queue header PCB, PCB,
ready head —=
queue tail registers registers
. .
. .
. .
mag head +—=
tape . =
unit 0 tail o —
tmag head T—=
ape
uni?1 @l — PCB, PCB,, PCB,
/ > —_— —=
disk head 1
unit 0 tail
PCB;
terminal head =
unit 0 tail B

Operating System Concepts — 8" Edition 3.23 Silberschatz, Galvin and Gagne ©2009

—

(Oroyioy

Representation of Process Scheduling

Process Terminates
is Born rmi
—_—
ready queue CPU
@ /O queue /O request
time slice
expired
child fork a
executes child
interrupt wait for an
occurs interrupt
Operating System Concepts — 8" Edition 3.24 Silberschatz, Galvin and Gagne ©2009
B

(Oroyioy

Schedulers

®m Long-term scheduler (or job scheduler)
e Selects which processes should be brought into the ready queue
e Selects which processes be swapped to disk

®m Short-term scheduler (or CPU scheduler)

e selects which process will run next

e Sometimes the only scheduler in a system

Operating System Concepts — 8" Edition 3.25 Silberschatz, Galvin and Gagne ©2009

v

Sy

Some tasks are ‘ready-to-run’

init_task list

run_queue

Those tasks that are ready-to-run comprise a sub-list of all the tasks,
and they are arranged on a queue known as the ‘run-queue’

Those tasks that are blocked while awaiting a specific event to occur
are put on alternative sub-lists, called ‘wait queues’, associated with
the particular event(s) that will allow a blocked task to be unblocked

Operating System Concepts — 8" Edition 3.26 Silberschatz, Galvin and Gagne ©2009

-
(S,

Schedulers (Cont.)

®m Short-term scheduler is invoked very frequently
e Typically 15-60 milliseconds
e Must be fast!
B Long-term scheduler is invoked very infrequently
e Seconds, minutes, or hours
e Could be slow (disk swap is very slow ...)
®m Processes that run for days, or even sleep for days but hold large
memory segments. The long-term scheduler may swap them to
disk
B Processes can be described as either:

e |/O-bound process — spends more time doing 1/0O than computations,
many short CPU bursts and long 1/O bursts

e CPU-bound process — spends more time doing computations; few very

long CPU bursts

Operating System Concepts — 8" Edition 3.27 Silberschatz, Galvin and Gagne ©2009

—

(Oroyioy

Communications in Client-Server Systems

®m Pipes

B Sockets

B Remote Procedure Calls

® Remote Method Invocation (Java)

Operating System Concepts — 8" Edition 3.44 Silberschatz, Galvin and Gagne ©2009

™

(Oroyioy

Sockets

®m A socket is defined as an endpoint for communication

m Concatenation of IP address and port

B The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

® Communication consists between a pair of sockets

Operating System Concepts — 8" Edition 3.45 Silberschatz, Galvin and Gagne ©2009

11

e d

< -/

Pipes

B Acts as a conduit allowing two processes to communicate

B [ssues
e Is communication unidirectional or bidirectional?
e In the case of two-way communication, is it half or full-duplex?

e Must there exist a relationship (i.e. parent-child) between the
communicating processes? (usable between processes with a
common ancestor)

e Can the pipes be used over a network?

Operating System Concepts — 8" Edition 3.46 Silberschatz, Galvin and Gagne ©2009

e d
< -/

Simplex, half-duplex, full-duplex

m A simplex line permits data to flow only in one direction
m doesn't support switching direction!

®m A half duplex line can alternately send or receive data but
only one at a time

m A full duplex line can send and receive data
simultaneously

Operating System Concepts — 8" Edition 3.47 Silberschatz, Galvin and Gagne ©2009

12

http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera
http://stackoverflow.com/questions/3557327/what-is-the-difference-between-full-duplex-half-duplex-and-simplex-tcp-ip-opera

—

(Oroyioy

Ordinary Pipes

® Ordinary Pipes allow communication in standard producer-
consumer style

B Producer writes to one end (the write-end of the pipe)

® Consumer reads from the other end (the read-end of the pipe)

® Ordinary pipes are therefore unidirectional

B Require parent-child relationship between communicating

processes
Operating System Concepts — 8" Edition 3.48 Silberschatz, Galvin and Gagne ©2009
o
-7 . .
, Ordinary Pipes
parent child
fd(0) fd(1) fd(0) fd(1)
Operating System Concepts — 8" Edition 3.49 Silberschatz, Galvin and Gagne ©2009

13

—

(Oroyioy

Named Pipes (FIFO)

® Named Pipes are more powerful than ordinary pipes
m Communication is bidirectional
®m No parent-child relationship is necessary between the
communicating processes
m Several processes can use the named pipe for communication
®m Provided on both UNIX and Windows systems
Operating System Concepts — 8t Edition 3.50 Silberschatz, Galvin and Gagne ©2009

—

b7 . .
| Socket Communication
host X
(146.86.5.20)
socket
(146.86.5.20:1625)
web server
(161.25.19.8)
socket
(161.25.19.8:80)
Operating System Concepts — 8" Edition 3.51 Silberschatz, Galvin and Gagne ©2009

14

