
Project 5

Linux System Programming

4.2

Linux System Programming

 This is a large set of problems that covers many topics of Linux system

programming

 It is not meant to be done in one week or even two or three weeks. It

should serve as a repository of problems for the student to learn as many

aspects as possible of the Linux system, for the rest of the semester

 The intention is to provide many examples of Linux programs and

techniques, and serve as a good repository for training toward the final

course exam

 We will try to solve some problems from this set along the semester but

may not have time to cover everything. You are encouraged to solve as

many as you can independently

 Some of these problems will serve as a basis for the final exam (probably

with some modifications)

4.3

How to get the source code

 The source code to all problems is located at:

~samyz/os/proj5

 You can copy it to your Linux account by following the

steps in the next slide:

cp –r ~samyz/os/proj5 ~

Remember that ‘~’ is a short name to your home

directory!

4.4

Copying to Your Linux Account

 Connect to your Linux account using the putty.exe program. If you

forgot how to do that, then read again this link:

http://www.samyzaf.com/braude/OS/index.html#linux

 Your first task is to copy all source files from my account to your

account:

cp –r ~samyz/os/proj5 ~

 This command will create a new directory ~/proj5 in your account with

all the source files inside

 List the files in this directory to make sure it exists and that it contains

all the source files in this project

 If you have to, you can remove this directory by the command:

rm –rf ~/proj5
and then get a fresh copy of this directory:

cp –r ~samyz/os/proj5 ~

http://www.samyzaf.com/braude/OS/index.html#linux

4.5

The gcc compiler

Problem 1:

 Enter the directory ~/proj5

 Use the gcc compiler to compile the C program copyfile.c:

gcc copyfile.c -o ~/bin/copyfile

 Describe what happened exactly, and try to understand how to

use the new copyfile system program?

 Experiment with the copyfile command in different directories:

 What happens if you try to copy a file which does not exist?

 What happens if you repeat the command twice on same arguments?

4.6

Playing with the copyfile command

 Go back to directory ~/proj5

 Download the text file cinderella.txt by the command :

wget http://www.samyzaf.com/braude/OS/code/cinderella.txt
(make sure you copy this path as is: Linux paths are case sensitive! OS != os)

 Run the command:

copyfile cinderella.txt cinderella_copy.txt

 Did you get the new file cinderella_copy.txt ?

 Is this file an exact copy of cinderella.txt ?

 How can you be 100% sure ?!

Hint: read about the Unix diff command

Challenge: write compare_files program in Python

It should return True if the two files are identical, False if not.

(to check your answer see: ~samyz/bin/compare_files)

http://www.samyzaf.com/braude/OS/code/cinderella.txt

4.7

Fixing the copyfile command

Problem 2:

 Use the Linux command "ls -l" for finding the last time the

file cinderella_copy.txt was modified.

 Run the command in stage 3 again. What happened to the

old cinderella_copy.txt file?

 Fix the problem in copyfile.c so that it does not overwrite

an existing file but issues a warning only

Hint: try to open the target file for reading, if you cannot,

then it does not exists …

if ((f2 = open(argv[2], O_RDONLY, 0)) >= 0)...

4.8

The g++ compiler

Problem 3:

 Go back to directory ~/proj5

 Use the g++ compiler to compile the C++ program pid_info.cpp:

g++ pid_info.cpp -o ~/bin/pid_info

 Run the command pid_info from the command line and try to

understand its output (add it as a comment in the program code)

 Use the Unix ps command to find who is the parent process of the

pid_info process?

 Write the same program in Python: pid_info.py

4.9

Working with directories

Problem 4:

 Go back to ~/proj5

 Read the C program dirtest.c

 Compile the program:

gcc dirtest.c –o ~/bin/dirtest

 Try to understand what it does and write your explanations at the program

code (as comments)

 Write similar program listfiles.c which accepts a directory path and

lists its files:
u12345@brdlinux:~> listfiles /usr/games
banner chess fortune tetris checkers candycrash …

Note: this is the minimal start for the Unix ls command …

4.10

Working with processed

Problem 5:

 Go back to ~/proj5

 Read the C program who_is_my_parent.c

 Compile the program:

g++ who_is_my_parent.cpp –o ~/bin/who_is_my_parent

 Use the Linux ps command to find the parent of this process

To get full help on the ps command run: ps --help all

4.11

fork ls

Problem 6:

 Go back to ~/proj5 and read the program fork_ls.c

 Compile this program by running:

gcc fork_ls.c –o ~/bin/fork_ls

 Run this program and explain its output

4.12

fork, execlp, and wait

Problem 7:

 Go back to ~/proj5

 Read the C program fork1.c

 Compile the program:

gcc fork1.c –o ~/bin/fork1

 Try to understand what it does and write your explanations at the program

code (as comments)

4.13

Fork: apples and bananas

Problem 8:

 Run the following programs:

/home/samyz/bin/apples
/home/samyz/bin/bananas

 Go back to ~/proj5. You can view there the source code for apples.c
and bananas.c, but you don’t have to compile them since you will run

them from my account (/home/samyz/bin)

 Write a program fork_apples_bananas.c which forks two processes:

 Child process runs /home/samyz/bin/apples using the execlp() system call

 Parent process runs /home/samyz/bin/bananas using the execlp() system call

 Hint: Look at the previous program and get the idea

 To check if your solution is OK, compare it to my solution at:

~samyz/os/proj5.sol/fork_apples_bananas.c

4.14

Fork Trio

Problem 9:

 Go back to ~/proj5 and read the program fork_trio.cpp (this is C++

program that uses the std namespace)

 Compile this program by running:

g++ fork_trio.cpp –o ~/bin/fork_trio

 Run this program and explain its output

 How many processes are created after running this program ? Please

explain!

 How many times the last line is printed and find which processes are

printing it? (Hint: use getpid() ...)

4.15

Fork Nested

Problem 10:

 Go back to ~/proj5 and read the program fork_nested.c

 Compile this program by running:

gcc fork_nested.c –o ~/bin/fork_nested

 Run this program and explain its output

 How many process area created by this program?

 Edit the program so that it shows for each line which process is printing it

 To check if your solution is OK, compare it to my solution at:

~samyz/os/proj5.sol/fork_nested.c

4.16

Zombie Process

Problem 11:

 Go back to ~/proj5 and read the program zombie_demo1.c

 Compile this program by running:

gcc zombie_demo1.c –o ~/bin/zombie_demo1

 A zombie process (defunct in Linux) is a process which has terminated

but cannot be removed by the OS from the process table since its parent

is too busy to collect its exit status (or forgot about it)

 Run the zombie_demo1 program. The parent should enter an infinite loop,

so you cannot use the terminal

 Start a new putty.exe session and use the Linux ps command to trace the

child process (by its pid) and its status

4.17

Orphan Process

Problem 12:

 Go back to ~/proj5 and read the program orphan_demo1.c

 Compile this program by running:

gcc orphan_demo1.c –o ~/bin/orphan_demo1

 An orphan process is a process whose parent has terminated

 Every Unix process (except init) must have a parent

 The question is what happens when to a child process when its parent has

terminated?

 To see the new parent run the command: ps -u <username> -l

 Run the zombie_demo1 program. The parent should enter an infinite loop,

so you cannot use the putty.exe terminal

 Start a new putty.exe session and use the Linux ps command to trace the

child process (by its pid) and its status

 To terminate the child process, get his pid and use the command: kill -9 pid

4.18

Very Simple Shell

Problem 13:

 Go back to ~/proj5 and read the program shell1.c

 Compile this program by running:

gcc shell1.c –o ~/bin/shell1

 Run this command (shell1) and feed it with a few examples of command names like:
ls, dir, whoami, pwd, ...

 Can you run a command that accepts arguments? (like: ‘ls /usr/src’)

4.19

Simple Shell 2

Problem 14:

 Go back to ~/proj5 and read the program shell2.c

 Compile this program by running:

gcc shell2.c –o ~/bin/shell2

 Run this command (shell2) and feed it with Linux commands with arguments!

 This time it’s not necessary to understand all the details in this program (complex)

 Instead try to run an equivalent Python program: shell2.py (see next slide)

4.20

Simple Unix Shell in Python (shell2.py)

Problem 15:

 Since shell2.c is not easy to understand and modify, let’s try to rewrite

the same program in Python

 Here are the Python functions you need to use:

 cmdline = raw_input("cmd> ")

 pid = os.fork()

 os.waitpid(pid,0)

 argv = cmdline.split()

 os.execvp() or os.execlp() or subporcess.Popen

 To check if your solution is correct, compare it with my solution:

~samyz/os/proj5.sol/shell2.py

4.21

Parent with multiple children

Problem 16:
 Go back to ~/proj5 and read the program multi_children.c

 Compile this program by running:

gcc multi_children.c –o ~/bin/multi_children

 A parent process can create multiple children processes and wait for each one of them

 To get a deep understanding of the code you must read about the wait system call

(and about the WIFEXITED and WEXITSTATUS macros)

 Use the command “man wait” in your Linux terminal to find all the information you need!

 You will also find info here: http://linuxmanpages.com/man2/wait.2.php

 Make sure you understand the difference between exit_code and exit_status

 Write a Python version of this program !

 Note: the original version of this program had several errors and it has been fixed

several times since then! (make sure you have the updated:

~samyz/os/proj5/multi_children.c)

http://linuxmanpages.com/man2/wait.2.php

4.22

Unix Signals

Problem 17:
 Go back to ~/proj5 and read the program signals_demo.c

 Compile this program by running:

gcc signals_demo.c –o ~/bin/signals_demo

 A parent process can create multiple children processes and then can send a signal

(kill) and wait for each one of them

 To get a deep understanding of the code you must read about the kill and wait system

call (and about the WIFEXITED and WEXITSTATUS macros)

 Use the command “man wait” and “man kill” in your Linux terminal to find all the information you

need!

 You will also find info here: http://linuxmanpages.com/man2/kill.2.php

 Try to explain the reverse order of process termination

 Write a Python version of this program !

http://linuxmanpages.com/man2/kill.2.php

4.23

Unix Pipe

Problem 18:

 Go back to ~/proj5 and read the program pipe_demo.c

 Compile this program by running:

gcc pipe_demo.c –o ~/bin/pipe_demo

 Read about Unix pipes from the following sources:

http://www.cs.rutgers.edu/~pxk/416/notes/c-tutorials/pipe.html

http://linuxprograms.wordpress.com/category/pipes

 For more advanced pipe examples look at the programs:

pipe_ls_wc1.c
pipe_ls_wc2.c

 If we have time we may take a look at them and try to understand them,

but we’ll probably prefer the Python API which will be easier to master and

use in later projects

http://www.cs.rutgers.edu/~pxk/416/notes/c-tutorials/pipe.html
http://linuxprograms.wordpress.com/category/pipes

4.24

Python Interface to the pipe system call

Problem 19:

 Go back to ~/proj5

 The Python os module has a simple interface os.pipe to the Linux pipe

system call, and os.fork() for the fork system call

 Read the files: pipe_test.py, pipe_fork_test.py
for very basic usage examples

 After understanding these examples, try to write an equivalent Python

program pipe_ls_wc1.py for pipe_ls_wc1.c

4.25

Back to Python subprocess module

Problem 20:

 Go back to ~/proj5

 Read the file subprocess_ls.py and explain the code there

 Make it executable by running the following two commands:

cp subprocess_ls.py ~/bin/subprocess_ls
chmod +x ~/bin/subprocess_ls

 Write a similar Python program to calculate the total size of programs (in

/usr/bin) that were installed before April 1, 2013?

Hint: look up the --time-styl option of the command ls

4.26

Back to Python subprocess module

Problem 21:

 Go back to ~/proj5

 Read the Python program process_info.py and make sure you

understand all the lines there

 Write a similar Python program to calculate the total size of programs (in

/usr/bin) that were installed before April 1, 2013?

Hint: look up the --time-styl option of the command ls

4.27

More on Python subprocess module

Problem 22:

 Run the command: ping www.cyberciti.biz
In your Linux (or DOS) terminal and get acquainted with its output form

 The ping system program is used by network administrators for

debugging and checking connectivity speeds

 Here is a simple Python interface to ping thru the subprocess module:

subprocess_ping.py

 Read this file and write a new file ping_speed.py which usee the Linux

ping command for calculating the average reply time to a given internet

address:

ping_speed www.cyberciti.biz
=> 175 milliseconds

http://www.cyberciti.biz/
http://www.cyberciti.biz/

