Project 4 The Linux Operating System

- Go to the Operating Systems Course page and learn how to connect to your Linux account: <u>http://www.samyzaf.com/braude/OS/index.html#linux</u>
- This page also explains how to transfer files from Windows to Linux and from Linux to Windows
- Your first task is to move all your solutions to project 3 from your Windows pc to your Linux account
- Log on to your Linux account (using putty.exe): Make sure to enter the correct server name: brdlinux.braude.ac.il login: u12345 password: u12345 (last 5 digits of your ID)

Reading Assignment

- Go to the Operating Systems Course page and read chapters 5 and 6 of the Hebrew OS book <u>http://www.samyzaf.com/braude/OS/os.pdf</u>
- Only 22 short pages! So don't be lazy ... ③

Linux Warm Up Exercises

Problem 1:

you need to create a new directory "proj4" under your Linux home directory: mkdir mkdir mkdir

Problem 2:

Move all solutions of project 3 from my account (samyz) to this directory:

cp ~samyz/os/proj4/* ~/proj4

Problem 3:

Make sure all files were copied all right by moving to this directory, list files, and view one of the files

- > cd ~/proj4
- > 1s
- > cat find_files.py

- All user programs are usually created inside the ~/bin directory.
 So you need to create a 'bin' directory:

 mkdir ~/bin
- Problem 4:

Copy your **find_files.py** program from ~/proj4 to a new file: **~/bin/find_files**

What is the Linux command to do that?

Note that the new file does not have the ".py" extension !

- To be able to run the find_files program as a system program from the Linux command line, you must first add execute permission on it:
 - > chmod +x find_files

chmod is the standard Linux command for controlling file permission bits (access control)

Using the find_files.py program in Linux

Run the following command:

> find_files /usr/src cpu.h

What are the 20 files that you get?

- Find how many directories named kernel are in /usr/src ?
- Find where are stdlib.h and stdio.h libraries are located? Hint: /usr/include, /usr/src, use the find_files program

Next Linux Python Program

- By now you should know that the symbol ~ represents your home directory in Linux (like: /home/u12345 or /home/samyz)
- Copy the file ~/proj4/proj3_ex2.py to ~/bin/dir_info
- Use the Linux editor 'nano' to edit dir_info.py so that it looks like:

```
#!/usr/bin/env python
import os, sys
def dir_info(directory):
    nfiles = 0
    ndirs = 0
   for path, dirs, files in os.walk(directory):
        nfiles += len(files)
        ndirs += len(dirs)
    return nfiles, ndirs
if __name__ == "__main__":
    dir = sys.argv[1]
    nfiles, ndirs = dir_info(dir)
   print "Number of files =", nfiles
    print "Number of directories =", ndirs
```


Using dir_info.py and beyond

Problem 5:

Count how many files and directories are in **/usr/src**?

To find the total file size of /usr/src we need to do the same thing for creating a new system program: ~/bin/dir_size

Problem 6:

Create a system program: ~/bin/dir_size which calculates the total file size of a directory Hint: Copy the function from proj3_ex1.py

Next Linux Challenge: dir_lines.py

Problem 7:

Write a function **dir_lines(directory)** which accepts a directory argument and computes the total number of lines in all the files in directory (including sub directories)

Problem 8:

Create a system program: ~/bin/dir_lines which reports the total number of lines of all files in directory

- Use the dir_lines program to count how many lines of code the Linux operating system has? Hint:
 - > dir_lines /usr/src