
1 Data Structures and Algorithms 31632

CLASSES AS

ABSTRACT DATA TYPES

AND

INTERFACE

IMPLEMENTATION

Part 4

2 Data Structures and Algorithms 31632

ABSTRACT

DATA

TYPE

ADT

3 Data Structures and Algorithms 31632

 Abstract Data Type (ADT)

A programmer-defined data type that specifies a set of data

values and a collection of well-defined operations that can

be performed on those values

 Only the formal definition of the data type is important

 NOT how it is implemented in binary form or in hardware

 Sometimes called:

“Separation of Interface and Implementation”

4 Data Structures and Algorithms 31632

 Hiding Information

How the data is represented?

How the operations are implemented?

This is completely irrelevant when we define a new

Abstract Data Type (ADT) !!!

 Encapsulation

A clear cut separation between developer view and client

view. Class users should not know and should not care

about how data is represented and how operations are

implemented

5 Data Structures and Algorithms 31632

Example: String ADT

String Data Type:
 A string of characters like
 s = "Hello World"
 s = "Guido Van Rossum, 1993"

Operations:
 upper(s) All characters to upper case
 lower(s) All characters to lower case
 find(s,w) Find a word w in s (return index)
 replace(s,w1,w2) Replace sub word w1 with w2

s = "Hello World"
upper(s) = "HELLO WORLD"
lower(s) = "hello world"
find(s, "Wo") = 6
replace(s, "lo", " NEW") = "Hel NEW World"

EXAMPLE CODE:

6 Data Structures and Algorithms 31632

 Note that the term “string of characters” does not imply

anything about its implementation (how English characters

are represented? How they are stored in memory? Disk?)

 It can be implemented as a C: array of characters

terminated by a NULL (each char in a byte, unicode,..)

 It can be implemented like a Java or C++ String object

 We may even decide to encode and compress the string if it

size is too large …

 We can decide to break each string to chunks of 4K in

different memory locations and keep a central table for

accessing these chunks (as a linked list), etc …

 In design decisions: The sky is the limit …

7 Data Structures and Algorithms 31632

 Similarly, nothing on how the find() and replace()

algorithms should be implemented is mentioned!

 Google’s find() and replace() string algorithms are probably

very different from those used in Microsoft Word !

 All we care is about how we Interface with the string data

type? (How to do? instead of how it is done?)

 All implementation issues are irrelevant to the ADT

specification!

 ADT specification is usually designed by clients

 ADT implementation designed by software developers

8 Data Structures and Algorithms 31632

 In Object Oriented Design, a Container is any object that

contains other objects in itself

 Other words: a collection is a group of values with no

implied organization or relationship between the individual

values

 Some languages restrict the elements to a specific data

type such as integers or floating-point values

 Python collections do not have such restriction!

 A Python collection may contain objects from mixed types!

9 Data Structures and Algorithms 31632

 The programming languages and literature are full with

many such object with many different names

 List

 Array

 Sequence

 Vector

 Set

 Stack

 Queue

 Heap

 Map

 Hash Table

 Dictionary

 Tree

 Graph

 Multimap

 Multiset

 Priority Queue

 String

10 Data Structures and Algorithms 31632

 In contrast to Container object, a Leaf Object is an object

that does not contain any reference to other objects (“has

no child objects”)

 In Python these are sometimes called “primitive types”

 Integer

 Float

 Complex number

 Boolean

 Char

 Leaf Objects are the building blocks from which all other

objects are built

11 Data Structures and Algorithms 31632

 Integer: -5, 19, 0, 1000 (C long)

 Float: -5.0, 19.25, 0.0, 1000.0 (C double)

 Complex numbers: a+bj

 Boolean: True, False

 Long integers (unlimited precision)

 Immutable string: “xyz”, “Hello, World”

12 Data Structures and Algorithms 31632

Arithmetic Operations

Operation Result
x + y sum of x and y

x - y difference of x and y

x * y product of x and y

x / y quotient of x and y (Integer division if x,y integers

x % y remainder of x / y

-x x negated

+x x unchanged

abs(x) absolute value or magnitude of x

int(x) x converted to integer

long(x) x converted to long integer (this is very long …)

float(x) x converted to floating point

complex(re,im) a complex number with real part re, imaginary part im. im defaults to zero

c.conjugate() conjugate of the complex number c. (Identity on real numbers)

divmod(x, y) the pair (x / y, x % y)

pow(x, y) x to the power y

x ** y x to the power y

13 Data Structures and Algorithms 31632

Comparisons

Operation Meaning

< strictly less than

<= less than or equal

> strictly greater than

<= greater than or equal

== equal

!= not equal

is object identity

is not negated object identity

14 Data Structures and Algorithms 31632

Bitwise Operations

Operation Result
x | y bitwise or of x and y

x ^ y bitwise exclusive or of x and y

x & y bitwise and of x and y

x << n x shifted left by n bits

x >> n x shifted right by n bits

~x the bits of x inverted

15 Data Structures and Algorithms 31632

The Complex Numbers Class

import cmath
z = cmath.sqrt(-9)
 3j
z = cmath.sqrt(5-12j)
 (3-2j)
z.imag
 -2.0
z.real
 3.0
z.conjugate()
 (3+2j)

The cmath module defines Complex

numbers arithmetic

Python contains a built-in type (class) for

complex numbers

A complex number object has two fields

and one method:

imag imaginary part

real real part

conjugate() The conjugate number

16 Data Structures and Algorithms 31632

Methods for creating new

objects
Constructors

Methods for accessing internal

data fields without modifying the

data!

Accessors

Methods for modifying object

data fields
Mutators

Methods for processing data

elements sequentially
Iterators

17 Data Structures and Algorithms 31632

 In this highly recommended methodology you write your tests before the

implementation of your ADT !!!

 After implementation, your tests should run and PASS after each

modification you make to your implementation (“nightly test regression”)

 The following tests are your “insurance policy” that your implementation

is correct. The more tests you write, the better you’re insured!

Testing our Student ADT
def test():
 s = Student("Dany Cohen", "03125", "07/08/1985")
 assert s.get_name() == "Dany Cohen"
 assert s.get_id() == "03125"
 assert s.get_birthday() == "07/08/1985"
 s.set_name("Daniel Cohen")
 assert s.get_name() == "Daniel Cohen"
 s.set_birthday("08/07/1986")
 assert s.get_birthday() == "08/07/1986"
 print "PASSED"

18 Data Structures and Algorithms 31632

 Remember: tests must be written before you even think

about an implementation!

 Make sure your tests cover the major features

 After writing an implementation you must run your tests: if

they fail, then your implementation is bad

 After changing an implementation you must run all the tests

again !!

 You may decide to throw away the whole implementation

and write a new one, without any change to your ADT

specification (“same Interface, different implementation”) –

your tests should pass again with the new implementation!

19 Data Structures and Algorithms 31632

 After defining an abstract data type, we need to implement it

in a specific programming language

 First we must define a concrete data structure in the

particular language for representing our abstract data

 Python basic data structures are usually implemented in the

C programming language

 More complex data structures are usually implemented over

the Python languages itself, and later transformed to C code

if performance is critical

20 Data Structures and Algorithms 31632

 There should be a total separation between an ADT

specification (sometimes called “Interface specification”) and its

possibly many implementations

 For example, the Python Language has a full implementation

over Java (called Jython), and at the same time Microsoft has a

full implementation of Python over C# which is called IronPython

 The Python implementation over C is called CPython

 The same Python tests must all pass in all three

implementations: CPython, Jython, and IronPython !

 The Python language itself is a pure interface! Unlike low level

languages such as C it does not have any business with

hardware registers, contiguous memory cells, etc. No relation to

hardware at all!

21 Data Structures and Algorithms 31632

 No clear separation between major and minor data types

 For example, when we see append(a,b) it’s not always clear

which is the list and who is the element?

 Composite expressions like:

 insert(append(extend(L1,L2),a3),7,b4)
can be very hard to read and understand compared to:

 L1.extend(L2).append(a3).insert(7,b4)

 Generic method names like append(), insert(), remove(),

size(), etc., cannot be reused for a different data structure (like

FILE or Vector), since they are global and already taken by the

List data type … this is a serious trouble.

 Code reuse is difficult

22 Data Structures and Algorithms 31632

 L = list_create1(e0, e1, e2,..., en-1) [constructor]

 Create a new list L from n elements: e0, e1,... , en-1

 L = list_create2(other) [constructor]

 Create a new list L from other list or a container structure [conversion]

 L.item(i) - Get element i of list L [accessor]

 L.contains(e) [accessor]

 Check if element e belongs to list L

 Returns: boolean True or False

 L.append(e) [mutator]

 Add a new element e to L

 What if e already belongs to L? (answer: duplications are allowed!)

 L.remove(e) [mutator]

 Remove an element e from L

 What if e is not in L? (two possibilities: 1. do nothing, 2. raise an error)

23 Data Structures and Algorithms 31632

 L.replace(index, e) [mutator]

 Replace element at index index with e

 L.insert(index, e) [mutator]

 Insert a new element e at index index

 Side effect: list grows by one element

 L.size() [accessor]

 Return the size of L

 L.extend(L2) [mutator]

 Extend list L by list L2

 L.reverse() [mutator]

 L.slice(i,j) [accessor]

 Return a sub-list consisting of all elements of L from index i to index j-1

 L.index(e) [accessor]

 Find the index of element e in L

24 Data Structures and Algorithms 31632

 Before implementing the List ADT, we write a test!

 Our implementation must pass this test to be qualified as correct!

Testing our List ADT
L1 = list_create1(2,3,5,7,11)
L2 = list_create2(L1) # “copy constructor”
assert L2 == L1 # Assertion
assert L2.item(0) == 2
L1.append(37)
L1.remove(2)
L1.remove(3)
L3 = list_create1(5,7,11,37)
assert L1 == L3 # Assertion
assert L3.index(37) == 3 # Assertion
L3.reverse()
L4 = list_create1(37,11,7,5)
assert L3 == L4 # Assertion

If it isn’t tested it doesn’t work !!

http://www.agiledata.org/essays/tdd.html

25 Data Structures and Algorithms 31632

 The functional notation

 foo(x), bar(x,y), baz(x,y,z)

was invented by the Mathematician Leonard Euler at 1748

 There is no specific sacred or holly reason for this notation!

Euler could at the same time use ‘<x>f’ or ‘f-x-’ or many

other possible notations

 We already have exceptions to this rule when we write x+y

instead of add(x,y), or x**n instead of power(x,n).

 Python writes: L = [a, b, c] instead of

list_create(a,b,c)

26 Data Structures and Algorithms 31632

 The most basic constructor for lists is:

 L = [x0, x1, x2, ..., xn]

 It corresponds to: list_create1(x0, x1, x2, …, xn)

 The other constructor is list(container_object)

 Lists can be created from a variety of other container

objects such as: set, array, string, dictionaries, and other

lists

27 Data Structures and Algorithms 31632

 Specification name and Implementation name do not have

to be the same!

 For example, in Python, the call

 L = list_create1(e0, e1, e2,..., en-1)
has been changed to:

 L = [e0, e1, e2, …, en-1]
and the call
 L.contains(e)
Has been changed to:
 e in L

 The only essential thing is that the name conveys the

meaning of the operation, and the operation is precisely

defined

28 Data Structures and Algorithms 31632

Python List Syntactic Sugar

Operation Python Syntactic Sugar

L=list_create1(a,…,b) L = [a, ...,b]

L=list_create2(other) L = list(other)

L.contains(e) e in L

L.item(i) L[i]

L.size() len(L)

L.slice(i,j) L[i:j]

L.equals(other) L == other

L.remove_by_index(i) del L[i]

L1.add(L2) L1+L2

L.mul(n) L*n or n*L

29 Data Structures and Algorithms 31632

 Some object oriented languages (like C++) contain an additional

method type: destructor

 A destructor is a method for destroying (or terminating) an object

 A destructor usually frees the memory that was used by the object and

may also perform additional cleanup and finalization tasks

 In such languages, failure to delete objects at the right time can lead to

serious memory problems, and even to program crash

 Modern object oriented languages such as Java, C#, and Python,

contain a mechanism (called “garbage collection”) which automatically

deletes objects as soon as they’re not needed anymore

 We will therefore not bother about this concept anymore in this course

 In extreme cases if needed you can use the Python del operator to
delete objects: del L

