
4/18/2014 Practical UML​: A Hands-On Introduction for Developers

http://edn.embarcadero.com/article/31863 1/7

EDN » Delphi

Practical UML​: A Hands-On Introduction for Developers
By: Randy Miller

Abstract: This tutorial provides a quick introduction to the Unified Modeling Language​

The heart of object-oriented problem solving is the construction of a model. The model abstracts the essential details of the underlying problem from its
usually complicated real world. Several modeling tools are wrapped under the heading of the UML™, which stands for Unified Modeling Language™. The
purpose of this course is to present important highlights of the UML.

At the center of the UML are its nine kinds of modeling diagrams, which we describe here.

Use case diagrams
Class diagrams
Object diagrams
Sequence diagrams
Collaboration diagrams
Statechart diagrams
Activity diagrams
Component diagrams
Deployment diagrams

Some of the sections of this course contain links to pages with more detailed information. And every section has short questions. Use them to test your
understanding of the section topic.

Why is UML important?

Let's look at this question from the point of view of the construction trade. Architects design buildings. Builders use the designs to create buildings. The more
complicated the building, the more critical the communication between architect and builder. Blueprints are the standard graphical language that both
architects and builders must learn as part of their trade.

Writing software is not unlike constructing a building. The more complicated the underlying system, the more critical the communication among everyone
involved in creating and deploying the software. In the past decade, the UML has emerged as the software blueprint language for analysts, designers, and
programmers alike. It is now part of the software trade. The UML gives everyone from business analyst to designer to programmer a common vocabulary to
talk about software design.

The UML is applicable to object-oriented problem solving. Anyone interested in learning UML must be familiar with the underlying tenet of object-oriented
problem solving -- it all begins with the construction of a model. A model is an abstraction of the underlying problem. The domain is the actual world from
which the problem comes.

Models consist of objects that interact by sending each other messages. Think of an object as "alive." Objects have things they know (attributes) and things
they can do (behaviors or operations). The values of an object's attributes determine its state.

Classes are the "blueprints" for objects. A class wraps attributes (data) and behaviors (methods or functions) into a single distinct entity. Objects are
instances of classes.

Use case diagrams
Use case diagrams describe what a system does from the standpoint of an external observer. The emphasis is on what a system does rather than how.

Use case diagrams are closely connected to scenarios. A scenario is an example of what happens when someone interacts with the system. Here is a
scenario for a medical clinic.

"A patient calls the clinic to make an appointment for a yearly checkup. The receptionist finds the nearest empty time slot in the appointment book and

schedules the appointment for that time slot. "

A use case is a summary of scenarios for a single task or goal. An actor is who or what initiates the events involved in that task. Actors are simply roles that
people or objects play. The picture below is a Make Appointment use case for the medical clinic. The actor is a Patient. The connection between actor and use
case is a communication association (or communication for short).

Hide image

Actors are stick figures. Use cases are ovals. Communications are lines that link actors to use cases.

A use case diagram is a collection of actors, use cases, and their communications. We've put Make Appointment as part of a diagram with four actors and four
use cases. Notice that a single use case can have multiple actors.

Hide image

Use case diagrams are helpful in three areas.

COMMUNITIES ARTICLES BLOGS RESOURCES DOWNLOADS HELP

 LOG ON | |EMBARCADERO HOME ENGLISHLOCATION

Watch, Follow, &
Connect with Us

javascript:expandAll();
javascript:collapseAll();
http://edn.embarcadero.com/
http://edn.embarcadero.com/delphi
http://gp.embarcadero.com/authors/edit/661.aspx
javascript:hideShowImage('docimageheader1', 'docimage1')
javascript:hideShowImage('docimageheader2', 'docimage2')
http://blogs.embarcadero.com/
http://edn.embarcadero.com/help
https://members.embarcadero.com/login.aspx?returnurl=http://edn.embarcadero.com/article/31863
http://www.embarcadero.com/
http://www.addthis.com/bookmark.php?v=250&pub=embarcadero
http://www.youtube.com/user/EmbarcaderoTechNet
http://twitter.com/EmbarcaderoTech

4/18/2014 Practical UML​: A Hands-On Introduction for Developers

http://edn.embarcadero.com/article/31863 2/7

determining features (requirements). New use cases often generate new requirements as the system is analyzed and the design takes shape.
communicating with clients. Their notational simplicity makes use case diagrams a good way for developers to communicate with clients.
generating test cases. The collection of scenarios for a use case may suggest a suite of test cases for those scenarios.

Class diagrams

A Class diagram gives an overview of a system by showing its classes and the relationships among them. Class diagrams are static -- they display what
interacts but not what happens when they do interact.

The class diagram below models a customer order from a retail catalog. The central class is the Order. Associated with it are the Customer making the
purchase and the Payment. A Payment is one of three kinds: Cash, Check, or Credit. The order contains OrderDetails (line items), each with its associated
Item.

Hide image

UML class notation is a rectangle divided into three parts: class name, attributes, and operations. Names of abstract classes, such as Payment, are in italics.
Relationships between classes are the connecting links.

Our class diagram has three kinds of relationships.

association -- a relationship between instances of the two classes. There is an association between two classes if an instance of one class must know
about the other in order to perform its work. In a diagram, an association is a link connecting two classes.
aggregation -- an association in which one class belongs to a collection. An aggregation has a diamond end pointing to the part containing the whole.
In our diagram, Order has a collection of OrderDetails.
generalization -- an inheritance link indicating one class is a superclass of the other. A generalization has a triangle pointing to the superclass.
Payment is a superclass of Cash, Check, and Credit.

An association has two ends. An end may have a role name to clarify the nature of the association. For example, an OrderDetail is a line item of each Order.

A navigability arrow on an association shows which direction the association can be traversed or queried. An OrderDetail can be queried about its Item, but
not the other way around. The arrow also lets you know who "owns" the association's implementation; in this case, OrderDetail has an Item. Associations
with no navigability arrows are bi-directional.

The multiplicity of an association end is the number of possible instances of the class associated with a single instance of the other end. Multiplicities are
single numbers or ranges of numbers. In our example, there can be only one Customer for each Order, but a Customer can have any number of Orders.

This table gives the most common multiplicities.

Multiplicities Meaning

0..1 zero or one instance. The notation n . . m indicates n to m instances.

0..* or * no limit on the number of instances (including none).

1 exactly one instance

1..* at least one instance

Every class diagram has classes, associations, and multiplicities. Navigability and roles are optional items placed in a diagram to provide clarity.

Packages and object diagrams

To simplify complex class diagrams, you can group classes into packages. A package is a collection of logically related UML elements. The diagram below is a

business model in which the classes are grouped into packages.

Hide image

http://edn.embarcadero.com/article/usecase.html
http://edn.embarcadero.com/article/q1frame.html
javascript:hideShowImage('docimageheader3', 'docimage3')
http://edn.embarcadero.com/article/images/31863/classdiagramno3d.gif
http://edn.embarcadero.com/article/classdiagram.html
http://edn.embarcadero.com/article/q2frame.html
javascript:hideShowImage('docimageheader4', 'docimage4')

4/18/2014 Practical UML​: A Hands-On Introduction for Developers

http://edn.embarcadero.com/article/31863 3/7

Packages appear as rectangles with small tabs at the top. The package name is on the tab or inside the rectangle. The dotted arrows are dependencies. One
package depends on another if changes in the other could possibly force changes in the first.

Object diagrams show instances instead of classes. They are useful for explaining small pieces with complicated relationships, especially recursive
relationships.

This small class diagram shows that a university Department can contain lots of other Departments.

Hide image

The object diagram below instantiates the class diagram, replacing it by a concrete example.

Hide image

Each rectangle in the object diagram corresponds to a single instance. Instance names are underlined in UML diagrams. Class or instance names may be
omitted from object diagrams as long as the diagram meaning is still clear.

Sequence diagrams

Class and object diagrams are static model views. Interaction diagrams are dynamic. They describe how objects collaborate.

A sequence diagram is an interaction diagram that details how operations are carried out -- what messages are sent and when. Sequence diagrams are
organized according to time. The time progresses as you go down the page. The objects involved in the operation are listed from left to right according to
when they take part in the message sequence.

Below is a sequence diagram for making a hotel reservation. The object initiating the sequence of messages is a Reservation window.

Hide image

The Reservation window sends a makeReservation() message to a HotelChain. The HotelChain then sends a makeReservation() message

to a Hotel. If the Hotel has available rooms, then it makes a Reservation and a Confirmation.

Each vertical dotted line is a lifeline, representing the time that an object exists. Each arrow is a message call. An arrow goes from the sender to the top of
the activation bar of the message on the receiver's lifeline. The activation bar represents the duration of execution of the message.

In our diagram, the Hotel issues a self call to determine if a room is available. If so, then the Hotel creates a Reservation and a Confirmation. The asterisk
on the self call means iteration (to make sure there is available room for each day of the stay in the hotel). The expression in square brackets, [], is a
condition.

The diagram has a clarifying note, which is text inside a dog-eared rectangle. Notes can be put into any kind of UML diagram.

javascript:hideShowImage('docimageheader5', 'docimage5')
javascript:hideShowImage('docimageheader6', 'docimage6')
http://edn.embarcadero.com/article/q3frame.html
javascript:hideShowImage('docimageheader7', 'docimage7')
http://edn.embarcadero.com/article/images/31863/sequencediagno3d.gif
http://edn.embarcadero.com/article/state.html

4/18/2014 Practical UML​: A Hands-On Introduction for Developers

http://edn.embarcadero.com/article/31863 4/7

Collaboration diagrams

Collaboration diagrams are also interaction diagrams. They convey the same information as sequence diagrams, but they focus on object roles instead of the
times that messages are sent. In a sequence diagram, object roles are the vertices and messages are the connecting links.

Hide image

The object-role rectangles are labeled with either class or object names (or both). Class names are preceded by colons (:).

Each message in a collaboration diagram has a sequence number. The top-level message is numbered 1. Messages at the same level (sent during the same
call) have the same decimal prefix but suffixes of 1, 2, etc. according to when they occur.

Statechart diagrams

Objects have behaviors and state. The state of an object depends on its current activity or condition. A statechart diagram shows the possible states of the
object and the transitions that cause a change in state.

Our example diagram models the login part of an online banking system. Logging in consists of entering a valid social security number and personal id
number, then submitting the information for validation.

Logging in can be factored into four non-overlapping states: Getting SSN, Getting PIN, Validating, and Rejecting. From each state comes a complete set of
transitions that determine the subsequent state.

Hide image

http://edn.embarcadero.com/article/state.html
http://edn.embarcadero.com/article/q4frame.html
javascript:hideShowImage('docimageheader8', 'docimage8')
http://edn.embarcadero.com/article/images/31863/collaborationo3d.gif
http://edn.embarcadero.com/article/q5frame.html
javascript:hideShowImage('docimageheader9', 'docimage9')
http://edn.embarcadero.com/article/images/31863/statediagno3d.gif

4/18/2014 Practical UML​: A Hands-On Introduction for Developers

http://edn.embarcadero.com/article/31863 5/7

States are rounded rectangles. Transitions are arrows from one state to another. Events or conditions that trigger transitions are written beside the arrows.
Our diagram has two self-transition, one on Getting SSN and another on Getting PIN.

The initial state (black circle) is a dummy to start the action. Final states are also dummy states that terminate the action.

The action that occurs as a result of an event or condition is expressed in the form /action. While in its Validating state, the object does not wait for an

outside event to trigger a transition. Instead, it performs an activity. The result of that activity determines its subsequent state.

Activity diagrams

An activity diagram is essentially a fancy flowchart. Activity diagrams and statechart diagrams are related. While a statechart diagram focuses attention on
an object undergoing a process (or on a process as an object), an activity diagram focuses on the flow of activities involved in a single process. The activity
diagram shows the how those activities depend on one another.

For our example, we used the following process.

"Withdraw money from a bank account through an ATM."

The three involved classes (people, etc.) of the activity are Customer, ATM, and Bank. The process begins at the black start circle at the top and ends at the
concentric white/black stop circles at the bottom. The activities are rounded rectangles.

Hide image

Activity diagrams can be divided into object swimlanes that determine which object is responsible for which activity. A single transition comes out of each
activity, connecting it to the next activity.

A transition may branch into two or more mutually exclusive transitions. Guard expressions (inside []) label the transitions coming out of a branch. A branch
and its subsequent merge marking the end of the branch appear in the diagram as hollow diamonds.

A transition may fork into two or more parallel activities. The fork and the subsequent join of the threads coming out of the fork appear in the diagram as
solid bars.

Component and deployment diagrams
A component is a code module. Component diagrams are physical analogs of class diagram. Deployment diagrams show the physical configurations of
software and hardware.

The following deployment diagram shows the relationships among software and hardware components involved in real estate transactions.

Hide image

http://edn.embarcadero.com/article/images/31863/statediagno3d.gif
http://edn.embarcadero.com/article/images/31863/state.html#State
http://edn.embarcadero.com/article/q6frame.html
javascript:hideShowImage('docimageheader10', 'docimage10')
http://edn.embarcadero.com/article/images/31863/activityno3d.gif
http://edn.embarcadero.com/article/q7frame.html
javascript:hideShowImage('docimageheader11', 'docimage11')

4/18/2014 Practical UML​: A Hands-On Introduction for Developers

http://edn.embarcadero.com/article/31863 6/7

The physical hardware is made up of nodes. Each component belongs on a node. Components are shown as rectangles with two tabs at the upper left.

UML Tools and Modeling Tools

Creating and modifying UML diagrams can be labor and time intensive. The UML modeling tools from Embarcadero Technologies make it easy to create
diagrams like the ones in this article plus they provide a great amount of other functionality including model and code synchronization.

Embarcadero Delphi is the fastest way to build native Windows applications. The Professional edition includes UML code visualization. The Enterprise edition
includes modeling with two way synchronization between model and code. The Architect edition includes the ability to create language-neutral UML modeling
projects. Learn more about Delphi or download a trial edition of Delphi and try it for yourself.

Similar UML modeling functionality is available for C++ in C++Builder, for Java in JBuilder and for Windows in Embarcadero RAD Studio. Database
modeling and business modeling are available in Embarcadero ER/Studio and ER/Studio Business Architect.

For the latest up-to-date techniques in the Unified Modeling Language and Agile Software Development Processes, and for all of the latest information on
how to deliver better software faster, visit The Embarcadero Developer Network

Copyright © 2003 Borland Software Corporation, Inc. All rights reserved. All Borland and Borland brands and product names are trademarks or registered
trademarks of Borland. You may not use any of the Borland trademarks without Borland's prior written permission. All other brand and product names may be
trademarks or registered trademarks of their respective holders.

Move mouse over comment to see the full text

Reply Posted by abdul basit on Sep 24 2013

re: Practical UML™: A Hands-On Introduction for Developers

good luck

Reply Posted by Brad Hanks on Jan 24 2013

Practical UML™: A Hands-On Introduction for Developers

Can I show you guys a great uml resource I use?

Reply Posted by jeremy davis on Aug 23 2012

Practical UML™: A Hands-On Introduction for Developers

thank u [health insurance quotes->http://echealthinsurance.com/]

Reply Posted by gebze41400s gebze on Mar 08 2010

Practical UMLâ„¢: A Hands-On Introduction for Developers

thank you sitess

Reply Posted by gebze41400s gebze on Mar 08 2010

Practical UMLâ„¢: A Hands-On Introduction for Developers

thank you sohbet

Reply Posted by gebze41400s gebze on Mar 08 2010

Practical UMLâ„¢: A Hands-On Introduction for Developers

thank you sites

Reply Posted by gebze41400s gebze on Mar 08 2010

Practical UMLâ„¢: A Hands-On Introduction for Developers

thank you sites

Reply Posted by gebze41400s gebze on Mar 08 2010

Practical UMLâ„¢: A Hands-On Introduction for Developers

thank you sites

Reply Posted by gebze41400s gebze on Mar 08 2010

Practical UMLâ„¢: A Hands-On Introduction for Developers

thank you sites

LATEST COMMENTS

http://edn.embarcadero.com/article/images/31863/deploymentno3d.gif
http://edn.embarcadero.com/article/q8frame.html
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
https://downloads.embarcadero.com/free/delphi
http://www.embarcadero.com/products/cbuilder
http://www.embarcadero.com/products/jbuilder
http://www.embarcadero.com/products/rad-studio
http://www.embarcadero.com/products/er-studio
http://edn.embarcadero.com/article/edn.embarcadero.com
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=44003
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=44003
http://threads.embarcadero.com/threads/threads.exe/view?commentid=44003
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=43792
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=43792
http://threads.embarcadero.com/threads/threads.exe/view?commentid=43792
https://www.lucidchart.com/pages/uml/
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=43659
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=43659
http://threads.embarcadero.com/threads/threads.exe/view?commentid=43659
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=42966
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=42966
http://threads.embarcadero.com/threads/threads.exe/view?commentid=42966
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=42965
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=42965
http://threads.embarcadero.com/threads/threads.exe/view?commentid=42965
http://www.sohbet.biz.tr/
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=42964
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=42964
http://threads.embarcadero.com/threads/threads.exe/view?commentid=42964
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=42963
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=42963
http://threads.embarcadero.com/threads/threads.exe/view?commentid=42963
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=42962
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=42962
http://threads.embarcadero.com/threads/threads.exe/view?commentid=42962
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=42961
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=42961
http://threads.embarcadero.com/threads/threads.exe/view?commentid=42961
http://threads.embarcadero.com/threads/threads.exe/thread?&sysid=1&contentid=31863&title=Practical%20UML%C2%99:%20A%20Hands-On%20Introduction%20for%20Developers
http://threads.embarcadero.com/threads/threads.exe/add?&sysid=1&contentid=31863&title=Practical%20UML%C2%99:%20A%20Hands-On%20Introduction%20for%20Developers
http://edn.embarcadero.com/article/31863/rss
http://edn.embarcadero.com/article/31863/atom
javascript:hideShowElement('commentsspan', 'commentsdiv')

4/18/2014 Practical UML​: A Hands-On Introduction for Developers

http://edn.embarcadero.com/article/31863 7/7

Copyright© 1994 - 2013 Embarcadero Technologies, Inc. All rights reserved. Site Map

Reply Posted by gebze41400s gebze on Mar 08 2010

Practical UMLâ„¢: A Hands-On Introduction for Developers

thank you sites

Server Response from: ETNASC02

http://edn.embarcadero.com/sitemap
http://threads.embarcadero.com/threads/threads.exe/reply?commentid=42960
http://threads.embarcadero.com/threads/threads.exe/userall?commentid=42960
http://threads.embarcadero.com/threads/threads.exe/view?commentid=42960

