
1Object Oriented Programming 31695 (Samy Zafrany)

Object Oriented Programming 31695

Practice Problems

http://en.wikipedia.org/wiki/Kakuro
http://en.wikipedia.org/wiki/Kakuro

2Object Oriented Programming 31695 (Samy Zafrany)

 Definition: A straight-row Sudoku board is a full 9x9 board that contains a

valid Sudoku solution with a straight-row (numbers in natural order)

 Straight-column Sudoku board is defined similarly

 Use your Sudoku class to write a Python program for calculating how many

straight-row Sudoku boards are there? Would inheritance be a more efficient

way to solve the problem?

 Here are two examples of such boards:

+-------+-------+-------+
9 6 7	8 2 3	4 5 1
8 4 5	1 9 7	2 3 6
1 2 3	4 5 6	7 8 9
+-------+-------+-------+		
2 9 8	5 6 1	3 7 4
6 3 1	2 7 4	8 9 5
7 5 4	9 3 8	1 6 2
+-------+-------+-------+		
3 7 9	6 4 2	5 1 8
4 8 6	7 1 5	9 2 3
5 1 2	3 8 9	6 4 7
+-------+-------+-------+

+-------+-------+-------+
2 9 8	5 6 1	3 7 4
6 3 1	2 7 4	8 9 5
7 5 4	9 3 8	1 6 2
+-------+-------+-------+		
3 7 2	6 4 5	9 1 8
4 1 6	3 8 9	5 2 7
5 8 9	7 1 2	6 4 3
+-------+-------+-------+		
8 4 5	1 9 7	2 3 6
1 2 3	4 5 6	7 8 9
9 6 7	8 2 3	4 5 1
+-------+-------+-------+

3Object Oriented Programming 31695 (Samy Zafrany)

 Definition: A straight-block Sudoku board is a full 9x9 board that contains a

valid Sudoku solution with a straight-block (3x3 sub-block with numbers in

natural order – see below)

 Use your Sudoku class to write a Python program for calculating how many

straight-block Sudoku boards are there?

 Here are two examples of such boards:

+-------+-------+-------+
8 9 1	2 3 4	5 6 7
2 3 4	5 6 7	8 1 9
5 6 7	8 9 1	2 3 4
+-------+-------+-------+		
1 8 9	6 2 5	7 4 3
6 4 3	1 7 8	9 2 5
7 2 5	3 4 9	1 8 6
+-------+-------+-------+		
9 1 2	4 5 6	3 7 8
3 5 6	7 8 2	4 9 1
4 7 8	9 1 3	6 5 2
+-------+-------+-------+

+-------+-------+-------+
3 4 8	9 1 5	2 6 7
5 7 2	4 8 6	1 9 3
6 9 1	2 3 7	8 4 5
+-------+-------+-------+		
8 2 4	5 6 1	3 7 9
1 5 7	8 9 3	4 2 6
9 3 6	7 2 4	5 8 1
+-------+-------+-------+		
4 6 5	3 7 2	9 1 8
7 8 3	1 4 9	6 5 2
2 1 9	6 5 8	7 3 4
+-------+-------+-------+

4Object Oriented Programming 31695 (Samy Zafrany)

+-------+-------+-------+
4 1 3	8 9 6	7 2 5
6 9 2	5 1 7	4 8 3
7 5 8	2 3 4	1 6 9
+-------+-------+-------+		
1 2 5	6 7 8	9 3 4
9 4 7	1 2 3	8 5 6
8 3 6	9 4 5	2 1 7
+-------+-------+-------+		
5 7 9	3 8 1	6 4 2
2 6 1	4 5 9	3 7 8
3 8 4	7 6 2	5 9 1
+-------+-------+-------+

 Definition: A straight-triangle Sudoku board is a full 9x9 board that contains a

valid Sudoku solution with a straight-triangle (see examples below)

 Use your Sudoku class to write a Python program for calculating how many

straight-triangle Sudoku boards are there?

 Here are two examples of such boards:

+-------+-------+-------+
5 2 3	8 9 1	7 4 6
6 7 4	2 5 3	8 9 1
1 8 9	4 7 6	2 3 5
+-------+-------+-------+		
4 1 7	9 2 5	3 6 8
8 3 5	1 6 7	9 2 4
9 6 2	3 4 8	1 5 7
+-------+-------+-------+		
2 5 6	7 8 9	4 1 3
3 4 8	5 1 2	6 7 9
7 9 1	6 3 4	5 8 2
+-------+-------+-------+

5Object Oriented Programming 31695 (Samy Zafrany)

+-------+-------+-------+
2 4 5	7 8 9	6 3 1
6 9 1	5 3 2	4 7 8
7 3 8	1 6 4	2 9 5
+-------+-------+-------+		
5 6 7	8 9 3	1 2 4
1 8 4	2 5 7	3 6 9
3 2 9	4 1 6	5 8 7
+-------+-------+-------+		
8 1 3	9 2 5	7 4 6
9 7 2	6 4 1	8 5 3
4 5 6	3 7 8	9 1 2
+-------+-------+-------+

 Definition: A straight-wave Sudoku board is a full 9x9 board that contains a

valid Sudoku solution with a straight-wave pattern (see examples below)

 Use your Sudoku class to write a Python program for calculating how many

straight-wave Sudoku boards are there?

 Here are two examples of such boards:

+-------+-------+-------+
5 7 4	6 9 3	1 8 2
1 2 6	7 4 8	5 3 9
8 9 3	5 2 1	7 4 6
+-------+-------+-------+		
7 1 9	8 3 6	2 5 4
3 4 2	1 5 9	8 6 7
6 8 5	2 7 4	9 1 3
+-------+-------+-------+		
4 6 7	9 8 5	3 2 1
9 5 1	3 6 2	4 7 8
2 3 8	4 1 7	6 9 5
+-------+-------+-------+

6Object Oriented Programming 31695 (Samy Zafrany)

 Fill in the grid so that every row, column, 3x3 box, contains the digits 1 through 9

 Gray cells are even, white cells are odd

 Use your Sudoku class (by inheritance) to build an EvenOddSudoku class which solves

this type of puzzles. Your class will be initialized by a board and a list of gray cells.

 Which methods you need to override? Write an ADT first

7Object Oriented Programming 31695 (Samy Zafrany)

 How hard is it to redesign a class for 6x6 Sudoku?

 ADT?

 Class skeleton

 Simple test

8Object Oriented Programming 31695 (Samy Zafrany)

 http://en.wikipedia.org/wiki/Futoshiki

 Each row and each columns must contain all six digits, but also must

honor inequality signs (“constraints”)

 Suggest an ADT (Abstract Data Type) for a Futoshiki Solver

 Write a simple test for that solver. It should test that the solver works for

at least one puzzle

 Board size can vary! 9x9, 12x12, 16x16, …

http://en.wikipedia.org/wiki/Futoshiki

9Object Oriented Programming 31695 (Samy Zafrany)

 http://en.wikipedia.org/wiki/Kakuro

 Like an ordinary crossword puzzle but with numbers and sums

 Easy to understand from the following example

 Boards can be of any size! 5x5, 8x8, 12x12, 16x16, etc

http://en.wikipedia.org/wiki/Kakuro
http://en.wikipedia.org/wiki/Kakuro
http://en.wikipedia.org/wiki/Kakuro

10Object Oriented Programming 31695 (Samy Zafrany)

 http://en.wikipedia.org/wiki/KenKen

 invented in 2004 by Japanese math teacher Tetsuya Miyamoto

 who intended the puzzles to be an instruction-free method of training the

brain

 Board size varies: 6x6, 8x8, 12x12, 16x16, etc.

http://en.wikipedia.org/wiki/KenKen
http://en.wikipedia.org/wiki/Tetsuya_Miyamoto

11Object Oriented Programming 31695 (Samy Zafrany)

 Look at the Stack ADT we did in class

 Add a new requirement: the Stack length must be limited by

a given size MAXLEN

 Implement this new BoundedStack class

 Can it be done by inheritance from Stack?

 Use a FullStack Exception class in your implementation

12Object Oriented Programming 31695 (Samy Zafrany)

 s = BundedStack(maxsize) Constructor
Create a new BoundedStack object with maximal size = maxsize

 s.push(item) Mutator

push a new item to the BoundedStack

make sure stack size does not exceed maxsize

 s.pop() Mutator

pop an item from the stack

raise an exception if stack is empty (EmptyStack)

 s.peek() Accessor

return head of stack

 s.is_empty() Accessor

 s.size() Acccessor

13Object Oriented Programming 31695 (Samy Zafrany)

 The two list implementations we saw in class had an O(n)

complexity in one of the methods: enqueue, dequeue

 Use two self.tail and self.head members to fix this problem

 Make sure that list memory is constrained

14Object Oriented Programming 31695 (Samy Zafrany)

 Show how to use a stack s and a Queue q to generate all

possible subsets of an n-element set T non-recursively

 Write an iterator class based on this idea

 Describe how to implement the stack ADT using a single queue

as a data member, and only constant additional local memory

within the method bodies

 What is the running time of the push(), pop(), and peek() methods

for your design?

 Describe how to implement the queue ADT using two stacks as

data members, such that all queue operations execute in

amortized O(1) time.

15Object Oriented Programming 31695 (Samy Zafrany)

 Describe how to implement the double-ended queue ADT using two

stacks as data members

 What are the running times of the methods?

 Suppose you have a stack s containing n elements and a queue q that

is initially empty. Describe how you can use q to scan s to see if it

contains a certain element x, with the additional constraint that your

algorithm must return the elements back to s in their original order

 You may only use s, q, and a constant number of other variables

16Object Oriented Programming 31695 (Samy Zafrany)

 Look at the Queue ADT we did in class

 Add a new requirement: the Queue length must be limited

by a given size MAXLEN

 Implement this new BoundedQueue class

 Can it be done by inheritance from Queue?

 Use a FullQueue Exception class in your implementation

17Object Oriented Programming 31695 (Samy Zafrany)

class LinkedList:
def __init__(self):

self.first = None
self.last = None

def insert(self, item): # Time complexity = O(1)
pass

def remove(self, item): # Time complexity = ?
pass # Left as an exercise!

def reverse(self): # Return a reversed linked list
pass # Left as an exercise

def index(self, item): # return first index of data in list
pass # Left as an exercise. Complexity = ?

def __str__(self):
pass

 Implement LinkedList class based on our Node class

18Object Oriented Programming 31695 (Samy Zafrany)

class Link(object):
def __init__(self, data, prev=None, next=None):

self.data = data
self.prev = prev
self.next = next

def __str__(self):
return 'Link(%s)' % str(self.data)

 To define a doubly linked list, we will need a new type of link element

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/link.py

19Object Oriented Programming 31695 (Samy Zafrany)

def test1():
a = Link('Alice')
b = Link('Bob', a)
c = Link('Clod', b)
d = Link('Dian', c)
e = Link('Eddi', d)
a.next = b
b.next = c
c.next = d
d.next = e

assert a.next.prev is a
assert e.prev.prev is c
assert a.next.next.next is d
assert e.data == 'Eddi'
assert d.data == 'Dian'
assert a.prev is None
print "test1 PASSED"

 Explain what the following test does?

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/link.py

20Object Oriented Programming 31695 (Samy Zafrany)

def test3():
a = Link('Alice')
b = Link('Bob', a)
c = Link('Clod', b)
d = Link('Dian', c)
e = Link('Eddi', d)
a.next = b
b.next = c
c.next = d
d.next = e
for l in forward_links(a):

print l.data

result should be:
Bob Clod Dian Eddi

 Write a function forward_links(x) which lists all the links that follow x

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/link.py

21Object Oriented Programming 31695 (Samy Zafrany)

class DoublyLinkedList:
def __init__(self):

self.last = None # tail
self.first = None # head
self.size = 0

def add_to_back(self, data):
"Add an item to the tail of the list"

def add_to_front(self, data):
"Add an item to the head of the list"

def remove(self, data): # Use the two methods below
"Remove an item from the list"

def remove_first_item(self):
"Remove the first item of list"

def remove_last_item(self):
"Remove last item of list"

def items(self): # List of data items

def __len__(self):
return self.size

def __str__(self):

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/doubly_linked_list.py

22Object Oriented Programming 31695 (Samy Zafrany)

 a queue-like data structure that supports insertion and

deletion at both the front and the back of the queue

 Methods:

add_fisrt(), add_last(), delete_first(),
delete_last(), is_empty(), size(), fisrt(),
last()

 Write an ADT and a basic test (that uses all methods!)

 Can it be implemented using a Python List?

 What about complexity concerns?

23Object Oriented Programming 31695 (Samy Zafrany)

 A Bag data structure is exactly as set but duplicates are allowed!

 Write a clear ADT from the test below

 Make sure complexity of operations is super efficient! (try O(1))

 Make sure operations like union, intersection, and difference accept any Python

container (list, set, dict, bag, stack, etc.)

def bag_test():
b = Bag([1,2,2])
b.add(7)
b.add(2)
b.add(7)
b.union([1,5,2,5]) # b = 1,2,2,2,2,5,5,7,7
b.intersection([2,1,1,2,5,7] # b = 1,1,2,2,5,7
b.add([1,5,1,5,1,2,2,2]) # how many occurrences of 2 ?
b.difference([1,2,7,8,16])
b.remove(2) # only one instance of 2 is removed
b.issubset([1,2,3,4,5,6,7])
print b.items() # print items with no multiplicity
b.size() # count multiplicities

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/link.py

