
1Object Oriented Programming 31695 (Samy Zafrany)

Object Oriented Programming 31695

Practice Problems

http://en.wikipedia.org/wiki/Kakuro
http://en.wikipedia.org/wiki/Kakuro

2Object Oriented Programming 31695 (Samy Zafrany)

 Definition: A straight-row Sudoku board is a full 9x9 board that contains a

valid Sudoku solution with a straight-row (numbers in natural order)

 Straight-column Sudoku board is defined similarly

 Use your Sudoku class to write a Python program for calculating how many

straight-row Sudoku boards are there? Would inheritance be a more efficient

way to solve the problem?

 Here are two examples of such boards:

+-------+-------+-------+
9 6 7	8 2 3	4 5 1
8 4 5	1 9 7	2 3 6
1 2 3	4 5 6	7 8 9
+-------+-------+-------+		
2 9 8	5 6 1	3 7 4
6 3 1	2 7 4	8 9 5
7 5 4	9 3 8	1 6 2
+-------+-------+-------+		
3 7 9	6 4 2	5 1 8
4 8 6	7 1 5	9 2 3
5 1 2	3 8 9	6 4 7
+-------+-------+-------+

+-------+-------+-------+
2 9 8	5 6 1	3 7 4
6 3 1	2 7 4	8 9 5
7 5 4	9 3 8	1 6 2
+-------+-------+-------+		
3 7 2	6 4 5	9 1 8
4 1 6	3 8 9	5 2 7
5 8 9	7 1 2	6 4 3
+-------+-------+-------+		
8 4 5	1 9 7	2 3 6
1 2 3	4 5 6	7 8 9
9 6 7	8 2 3	4 5 1
+-------+-------+-------+

3Object Oriented Programming 31695 (Samy Zafrany)

 Definition: A straight-block Sudoku board is a full 9x9 board that contains a

valid Sudoku solution with a straight-block (3x3 sub-block with numbers in

natural order – see below)

 Use your Sudoku class to write a Python program for calculating how many

straight-block Sudoku boards are there?

 Here are two examples of such boards:

+-------+-------+-------+
8 9 1	2 3 4	5 6 7
2 3 4	5 6 7	8 1 9
5 6 7	8 9 1	2 3 4
+-------+-------+-------+		
1 8 9	6 2 5	7 4 3
6 4 3	1 7 8	9 2 5
7 2 5	3 4 9	1 8 6
+-------+-------+-------+		
9 1 2	4 5 6	3 7 8
3 5 6	7 8 2	4 9 1
4 7 8	9 1 3	6 5 2
+-------+-------+-------+

+-------+-------+-------+
3 4 8	9 1 5	2 6 7
5 7 2	4 8 6	1 9 3
6 9 1	2 3 7	8 4 5
+-------+-------+-------+		
8 2 4	5 6 1	3 7 9
1 5 7	8 9 3	4 2 6
9 3 6	7 2 4	5 8 1
+-------+-------+-------+		
4 6 5	3 7 2	9 1 8
7 8 3	1 4 9	6 5 2
2 1 9	6 5 8	7 3 4
+-------+-------+-------+

4Object Oriented Programming 31695 (Samy Zafrany)

+-------+-------+-------+
4 1 3	8 9 6	7 2 5
6 9 2	5 1 7	4 8 3
7 5 8	2 3 4	1 6 9
+-------+-------+-------+		
1 2 5	6 7 8	9 3 4
9 4 7	1 2 3	8 5 6
8 3 6	9 4 5	2 1 7
+-------+-------+-------+		
5 7 9	3 8 1	6 4 2
2 6 1	4 5 9	3 7 8
3 8 4	7 6 2	5 9 1
+-------+-------+-------+

 Definition: A straight-triangle Sudoku board is a full 9x9 board that contains a

valid Sudoku solution with a straight-triangle (see examples below)

 Use your Sudoku class to write a Python program for calculating how many

straight-triangle Sudoku boards are there?

 Here are two examples of such boards:

+-------+-------+-------+
5 2 3	8 9 1	7 4 6
6 7 4	2 5 3	8 9 1
1 8 9	4 7 6	2 3 5
+-------+-------+-------+		
4 1 7	9 2 5	3 6 8
8 3 5	1 6 7	9 2 4
9 6 2	3 4 8	1 5 7
+-------+-------+-------+		
2 5 6	7 8 9	4 1 3
3 4 8	5 1 2	6 7 9
7 9 1	6 3 4	5 8 2
+-------+-------+-------+

5Object Oriented Programming 31695 (Samy Zafrany)

+-------+-------+-------+
2 4 5	7 8 9	6 3 1
6 9 1	5 3 2	4 7 8
7 3 8	1 6 4	2 9 5
+-------+-------+-------+		
5 6 7	8 9 3	1 2 4
1 8 4	2 5 7	3 6 9
3 2 9	4 1 6	5 8 7
+-------+-------+-------+		
8 1 3	9 2 5	7 4 6
9 7 2	6 4 1	8 5 3
4 5 6	3 7 8	9 1 2
+-------+-------+-------+

 Definition: A straight-wave Sudoku board is a full 9x9 board that contains a

valid Sudoku solution with a straight-wave pattern (see examples below)

 Use your Sudoku class to write a Python program for calculating how many

straight-wave Sudoku boards are there?

 Here are two examples of such boards:

+-------+-------+-------+
5 7 4	6 9 3	1 8 2
1 2 6	7 4 8	5 3 9
8 9 3	5 2 1	7 4 6
+-------+-------+-------+		
7 1 9	8 3 6	2 5 4
3 4 2	1 5 9	8 6 7
6 8 5	2 7 4	9 1 3
+-------+-------+-------+		
4 6 7	9 8 5	3 2 1
9 5 1	3 6 2	4 7 8
2 3 8	4 1 7	6 9 5
+-------+-------+-------+

6Object Oriented Programming 31695 (Samy Zafrany)

 Fill in the grid so that every row, column, 3x3 box, contains the digits 1 through 9

 Gray cells are even, white cells are odd

 Use your Sudoku class (by inheritance) to build an EvenOddSudoku class which solves

this type of puzzles. Your class will be initialized by a board and a list of gray cells.

 Which methods you need to override? Write an ADT first

7Object Oriented Programming 31695 (Samy Zafrany)

 How hard is it to redesign a class for 6x6 Sudoku?

 ADT?

 Class skeleton

 Simple test

8Object Oriented Programming 31695 (Samy Zafrany)

 http://en.wikipedia.org/wiki/Futoshiki

 Each row and each columns must contain all six digits, but also must

honor inequality signs (“constraints”)

 Suggest an ADT (Abstract Data Type) for a Futoshiki Solver

 Write a simple test for that solver. It should test that the solver works for

at least one puzzle

 Board size can vary! 9x9, 12x12, 16x16, …

http://en.wikipedia.org/wiki/Futoshiki

9Object Oriented Programming 31695 (Samy Zafrany)

 http://en.wikipedia.org/wiki/Kakuro

 Like an ordinary crossword puzzle but with numbers and sums

 Easy to understand from the following example

 Boards can be of any size! 5x5, 8x8, 12x12, 16x16, etc

http://en.wikipedia.org/wiki/Kakuro
http://en.wikipedia.org/wiki/Kakuro
http://en.wikipedia.org/wiki/Kakuro

10Object Oriented Programming 31695 (Samy Zafrany)

 http://en.wikipedia.org/wiki/KenKen

 invented in 2004 by Japanese math teacher Tetsuya Miyamoto

 who intended the puzzles to be an instruction-free method of training the

brain

 Board size varies: 6x6, 8x8, 12x12, 16x16, etc.

http://en.wikipedia.org/wiki/KenKen
http://en.wikipedia.org/wiki/Tetsuya_Miyamoto

11Object Oriented Programming 31695 (Samy Zafrany)

 Look at the Stack ADT we did in class

 Add a new requirement: the Stack length must be limited by

a given size MAXLEN

 Implement this new BoundedStack class

 Can it be done by inheritance from Stack?

 Use a FullStack Exception class in your implementation

12Object Oriented Programming 31695 (Samy Zafrany)

 s = BundedStack(maxsize) Constructor
Create a new BoundedStack object with maximal size = maxsize

 s.push(item) Mutator

push a new item to the BoundedStack

make sure stack size does not exceed maxsize

 s.pop() Mutator

pop an item from the stack

raise an exception if stack is empty (EmptyStack)

 s.peek() Accessor

return head of stack

 s.is_empty() Accessor

 s.size() Acccessor

13Object Oriented Programming 31695 (Samy Zafrany)

 The two list implementations we saw in class had an O(n)

complexity in one of the methods: enqueue, dequeue

 Use two self.tail and self.head members to fix this problem

 Make sure that list memory is constrained

14Object Oriented Programming 31695 (Samy Zafrany)

 Show how to use a stack s and a Queue q to generate all

possible subsets of an n-element set T non-recursively

 Write an iterator class based on this idea

 Describe how to implement the stack ADT using a single queue

as a data member, and only constant additional local memory

within the method bodies

 What is the running time of the push(), pop(), and peek() methods

for your design?

 Describe how to implement the queue ADT using two stacks as

data members, such that all queue operations execute in

amortized O(1) time.

15Object Oriented Programming 31695 (Samy Zafrany)

 Describe how to implement the double-ended queue ADT using two

stacks as data members

 What are the running times of the methods?

 Suppose you have a stack s containing n elements and a queue q that

is initially empty. Describe how you can use q to scan s to see if it

contains a certain element x, with the additional constraint that your

algorithm must return the elements back to s in their original order

 You may only use s, q, and a constant number of other variables

16Object Oriented Programming 31695 (Samy Zafrany)

 Look at the Queue ADT we did in class

 Add a new requirement: the Queue length must be limited

by a given size MAXLEN

 Implement this new BoundedQueue class

 Can it be done by inheritance from Queue?

 Use a FullQueue Exception class in your implementation

17Object Oriented Programming 31695 (Samy Zafrany)

class LinkedList:
def __init__(self):

self.first = None
self.last = None

def insert(self, item): # Time complexity = O(1)
pass

def remove(self, item): # Time complexity = ?
pass # Left as an exercise!

def reverse(self): # Return a reversed linked list
pass # Left as an exercise

def index(self, item): # return first index of data in list
pass # Left as an exercise. Complexity = ?

def __str__(self):
pass

 Implement LinkedList class based on our Node class

18Object Oriented Programming 31695 (Samy Zafrany)

class Link(object):
def __init__(self, data, prev=None, next=None):

self.data = data
self.prev = prev
self.next = next

def __str__(self):
return 'Link(%s)' % str(self.data)

 To define a doubly linked list, we will need a new type of link element

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/link.py

19Object Oriented Programming 31695 (Samy Zafrany)

def test1():
a = Link('Alice')
b = Link('Bob', a)
c = Link('Clod', b)
d = Link('Dian', c)
e = Link('Eddi', d)
a.next = b
b.next = c
c.next = d
d.next = e

assert a.next.prev is a
assert e.prev.prev is c
assert a.next.next.next is d
assert e.data == 'Eddi'
assert d.data == 'Dian'
assert a.prev is None
print "test1 PASSED"

 Explain what the following test does?

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/link.py

20Object Oriented Programming 31695 (Samy Zafrany)

def test3():
a = Link('Alice')
b = Link('Bob', a)
c = Link('Clod', b)
d = Link('Dian', c)
e = Link('Eddi', d)
a.next = b
b.next = c
c.next = d
d.next = e
for l in forward_links(a):

print l.data

result should be:
Bob Clod Dian Eddi

 Write a function forward_links(x) which lists all the links that follow x

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/link.py

21Object Oriented Programming 31695 (Samy Zafrany)

class DoublyLinkedList:
def __init__(self):

self.last = None # tail
self.first = None # head
self.size = 0

def add_to_back(self, data):
"Add an item to the tail of the list"

def add_to_front(self, data):
"Add an item to the head of the list"

def remove(self, data): # Use the two methods below
"Remove an item from the list"

def remove_first_item(self):
"Remove the first item of list"

def remove_last_item(self):
"Remove last item of list"

def items(self): # List of data items

def __len__(self):
return self.size

def __str__(self):

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/doubly_linked_list.py

22Object Oriented Programming 31695 (Samy Zafrany)

 a queue-like data structure that supports insertion and

deletion at both the front and the back of the queue

 Methods:

add_fisrt(), add_last(), delete_first(),
delete_last(), is_empty(), size(), fisrt(),
last()

 Write an ADT and a basic test (that uses all methods!)

 Can it be implemented using a Python List?

 What about complexity concerns?

23Object Oriented Programming 31695 (Samy Zafrany)

 A Bag data structure is exactly as set but duplicates are allowed!

 Write a clear ADT from the test below

 Make sure complexity of operations is super efficient! (try O(1))

 Make sure operations like union, intersection, and difference accept any Python

container (list, set, dict, bag, stack, etc.)

def bag_test():
b = Bag([1,2,2])
b.add(7)
b.add(2)
b.add(7)
b.union([1,5,2,5]) # b = 1,2,2,2,2,5,5,7,7
b.intersection([2,1,1,2,5,7] # b = 1,1,2,2,5,7
b.add([1,5,1,5,1,2,2,2]) # how many occurrences of 2 ?
b.difference([1,2,7,8,16])
b.remove(2) # only one instance of 2 is removed
b.issubset([1,2,3,4,5,6,7])
print b.items() # print items with no multiplicity
b.size() # count multiplicities

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/CODE/link.py

