
1Object Oriented Programming 31695 (Samy Zafrany)

OOA, OOD, OOP

POKER-6S

http://en.wikipedia.org/wiki/Poker
http://en.wikipedia.org/wiki/Poker

2Object Oriented Programming 31695 (Samy Zafrany)

 Download poker.zip from:
http://samyzaf.com/braude/OOP/PROJECTS/poker.zip

 Unzip this file in drive C (or D), so your project will

reside in: C:\poker (or D:\poker)

 You will find there all the files you need for the Poker project

 You can also access individual files from:
http://www.samyzaf.com/braude/OOP/PROJECTS/poker

 Make sure to edit the README.txt file and enter all

the required information (name, email, phones, etc.)

 After completing your project, you should zip this

directory back to poker.zip and upload it to:

http://www.samyzaf.com/braude/OOP/upload.html

http://samyzaf.com/braude/OOP/PROJECTS/poker.zip
http://www.samyzaf.com/braude/OOP/PROJECTS/poker
http://www.samyzaf.com/braude/OOP/upload.html

3Object Oriented Programming 31695 (Samy Zafrany)

 This Final course project 2 (the first was Sudoku)

 Assuming you have already completed the Blackjack project, starting this

project should be easier, so we spend less time on preparations

 Your will need to master the game rules by yourself. We use the five-cards

draw variation, but we simplified it and created our own special version of the

poker game which we call: Poker-6S

 Use Google, YouTube, and online games to sharpen your acquaintance with

this type of Poker (the five-cards draw variation).

 You have to build a software model of a simple version of Poker, and then use

your model to simulating thousands of Poker games in order to

 Collect statistical results

 Test the quality of several playing strategies (before using them in a real

games)

 Invest some time on reading the rules and getting knowledge of the game, think

about the problems and how to model them, use UML diagrams, and then

proceed to implementation

4Object Oriented Programming 31695 (Samy Zafrany)

 Make sure you have a full set of class diagrams before you start

your coding (you also have to submit it as part of your project!)

 You can fix these diagrams later along the coding stage

 For each class, write a short ADT page that describes its

functionality (you must also submit an ADT for each class that

you design)

 Write as many tests as you can which cover each class and each

of its significant methods (even how its objects are printed!)

 Make sure you have a full set of tests that will guide you through

your implementation phase

5Object Oriented Programming 31695 (Samy Zafrany)

 An important goal of the project is to develop a game strategy

that computes your next move from the current game state (a

precise definition will follow later on)

 Your strategy will be tested against the other strategies of the

course students, and its success will have some weight on the

project grade! (that means that all student teams will participate

in a virtual tournament of several thousand games on a fast

computer)

 Suggestion: A strategy should be a function f(stage, hand, bets)

where stage is a number 1-6, hand is my current hand, and bets

is a list of [‘bet’, ‘fold’, ‘unknown’] values of all other players ??

Make sure it returns a cards to exchange at stage 4 …

6Object Oriented Programming 31695 (Samy Zafrany)

 We will use a simple Poker variant called

“Five-Card Draw Poker”

which is best described in the following links:
http://www.contrib.andrew.cmu.edu/~gc00/reviews/pokerrules

http://www.pagat.com/poker/rules

 You can download PDF versions here:
http://www.samyzaf.com/braude/OOP/PROJECTS/poker/Basic_Poker_Rules.pdf

http://www.samyzaf.com/braude/OOP/PROJECTS/poker/Five_Cards_Draw_Poker.pdf

 Here is a table of all Poker Hand Types:
http://www.samyzaf.com/braude/OOP/PROJECTS/poker/pokerhands.pdf

 But even this simple version is still not simple enough, so

we make it even simpler by removing some complications

(like blinds and unlimited bets), and call it Poker-6S (6-

stages poker). See next slides.

http://www.contrib.andrew.cmu.edu/~gc00/reviews/pokerrules
http://www.pagat.com/poker/rules
http://www.samyzaf.com/braude/OOP/PROJECTS/poker/Basic_Poker_Rules.pdf
http://www.samyzaf.com/braude/OOP/PROJECTS/poker/Five_Cards_Draw_Poker.pdf
http://www.samyzaf.com/braude/OOP/PROJECTS/poker/pokerhands.pdf

7Object Oriented Programming 31695 (Samy Zafrany)

 Number of Players: 2-6

 Deck of 52 cards (no jokers!)

 To make it simple: Dealer does not play! Just deals the cards!

 Player actions: bet, fold

We will give up the usual check, call, and raise actions, and use

only the bet and fold actions

 Bet unit: 1 chip

 No blinds! (we want our game to be simple )

 Each game consists of 6 stages as described in the next slide

 In case that all players (except one) fold at an early stage, the

game may be closed after less than 6 stages

8Object Oriented Programming 31695 (Samy Zafrany)

 Stage 1: RoundBet1
All players bet 1 chip (to keep it simple)

 Stage 2: Draw
Dealer draws 5 cards for each player (face down). Each player gets to see his cards and

evaluate his hand. No player can see the other players cards!

 Stage 3: RoundBet2
Each player must either bet (add 1 chip to the pool) or fold (leave the game and loose the

chips he put in the pool). If all fold except one, he takes the pool and game is finished.

 Stage 4: Exchange Cards
Each player (at his turn) can now choose 0 to 3 cards in his hand and ask the dealer to

replace them with new cards. The discarded cards are put aside and are not returned to

the deck!

 Stage 5: RoundBet3
Each player must either bet (add 1 chip to the pool) or fold (leave the game and loose the

chips he put in the pool). If all players fold except one, he automatically gets the pool and

game is finished.

 Stage 6: Showdown
Remaining players expose their cards (“face-up”) and the best hand takes the pool. If only

one player remained, he takes the pool without showing his cards.

Equal best hands share the pool (the pool is divided equally between them).

9Object Oriented Programming 31695 (Samy Zafrany)

 It is clear that the last player has an advantage: if all previous players

fold, he automatically gets the pool, even if he has the worst hand!

 It is therefore necessary to change their order on each game

 The simplest fair shuffling scheme is as follows:

[p1, p2, p3, p4] => [p2, p3, p4, p1]

 It can be easily obtained by the following Python code:

players = players[1:] + players[0:1]

 Game state can be represented by a tuple like (1,0,1,1,2,2), where

0 = fold

1 = bet

2 = did not play yet

 If we have six players, then player 4 can only know what the first three

players did, since player 5 and 6 did not move yet (2)

 The state should be a data member of the Game class?

Who is going to update it?

10Object Oriented Programming 31695 (Samy Zafrany)

 A Poker strategy is a function that gets the current game

state and tells the player his next move:

f(stage, hand, bets)

 The game state should include:

 The player hand (5 cards)

 The current stage (1-6)

 What the previous players did (bets/folds)

 This is just an initial suggestion and you may have better

ideas when you design and write your code

11Object Oriented Programming 31695 (Samy Zafrany)

 Make sure to make a distinction between a game and a

GameSequence (a sequence of games)

 A GameSequence is a sequence of games with a fixed group of

players

 Some of the players may not be able to participate in all games if

they go broke in the middle

 Make sure to shuffle the players at the start of each game

12Object Oriented Programming 31695 (Samy Zafrany)

 Our main goal in this project is to test several player

strategies by simulating a few thousand games with our

software environment

 We will later define what kind of simulations we want to do

and may supply several examples of strategies

13Object Oriented Programming 31695 (Samy Zafrany)

 Each team should come up with its best strategy

 We will conduct a virtual contest between all teams to see

who suggested the best strategy

 Naturally, the team with the best strategy will be enttled to a

higher project grade …

 More details soon

14Object Oriented Programming 31695 (Samy Zafrany)

OBJECT ORIENTED DESIGN

OOD

Card
rank
suit

value()

Player
name
budget
hand
state
strategy

call()
raise()
fold()

15Object Oriented Programming 31695 (Samy Zafrany)

 Here are some ideas for classes we want to consider – just a

suggestion! Nothing final yet … you will decide …

 Do some thinking on what classes you think we should have?

And what sort of attributes and methods should they have?

Card
rank
suit

value()

Deck

cards

shuffle()
draw_card()

Hand
cards
soft

add(card)
value()

Dealer
name?
state
deck

shuffle()
draw_card?

Any other classes ???

Game
dealer
players
log

open()
close()
run()
history()
is_finished
???

Player
name
budget
hand
state
strategy

sort()
exchange()
call()
raise()
fold()

Pool
bets?

deposit()?
value()

16Object Oriented Programming 31695 (Samy Zafrany)

17Object Oriented Programming 31695 (Samy Zafrany)

 OOD brainstorming in class (but please start thinking about

OOD before the class)

 We need to decide what are our classes? How do they

relate to each other?

 OOP

 After OOD we need to implement our specification in some

programming language

 Naturally we will start with Python

 Your last assignment in this course is to convert our Python

implementation to another language such as Java, C++, or C# - we

will discuss this in class

18Object Oriented Programming 31695 (Samy Zafrany)

 Remember our long term goal: create a convenient software

environment for simulating thousands of Poker games in order to

test player strategies (so we know how good they are before we

use them in a Casino …:-)

 Please start by designing a few more classes toward this goal

 To get you started, here are client tests and two suggestion for

classes that give you a taste for what we are trying to do

 Remember that writing tests (many of them) before you write

classes can actually help you make better design choices!

19Object Oriented Programming 31695 (Samy Zafrany)

 The previous experiments are useful for comparing existing

strategies

 How about playing millions of games and improving our

best strategy?

 After playing millions of games, we may find that our best

strategy (strategy2) has some defects and can be fixed by

some small changes to the tables

 Probabilistic strategies: after many games we can learn

things such as: when player total is soft 18 and dealer is

soft 15, then play should hit at probability 0.76 and stand in

probability 0.26. These are probabilistic strategies

 Ideas for a future final project …

