UML

UNIFIED MODELLING LANGUAGE

EXEMPLIFIED ON BLACKJACK
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http://en.wikipedia.org/wiki/Unified_Modeling_Language

AGENDA

m Theoretically, before we write object-oriented code for solving a
problem, we need to design an abstract model which depicts the
essential features and hides all irrelevant details

m This is usually achieved by a bunch of Class Diagrams, Use-case
diagrams, object diagrams, etc.

m The standard framework for doing it is called UML™:

Unified Modeling Language

m This framework deserves a full course of its own, but in this presentation
we will exhibit some of its main ideas, exemplified on our Blackjack
project
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UML - Unified Modeling Language
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m UML has nine kinds of modeling diagrams:

Use-case diagrams

Class diagrams Object diagrams
Sequence diagrams
Collaboration diagrams
State-chart diagrams

Activity diagrams

Component diagrams
Deployment diagrams

m The relation of UML to OOP is like architect to builder
+ One must have a clear architectural plan before constructing a

physical building!

¢ The plan should enable easy communication between both !

Object Oriented Programming 31695 (Samy Zafrany)



UML - Basics

m As of today, UML has become the standard modelling language for
software analysts, architects, and programmers

m [t enables managers, clients, and programmers (in one or several
teams) to communicate efficiently when designing or refactoring
software systems, even if some of the participants are not professional
programmers

m UML is best tuned to object-oriented methodologies, therefore some
familiarity with OOP is required before learning UML

m A UML model is an abstract system which represents the objects and
the relations in our problem domain

m A UML model consist of abstract items (“objects”) that own attributes
and methods

m UML objects can interact with each other by “activating” each other (one
object can ask another object to invoke one of his method, or simply
getting one of his attributes)
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UML - Basics

m A class is the architectural plan for objects of its kind

m A class consists of attributes (or data members) and behaviors (also
called methods)

m Objects are also knows as instances of a class

m Each object of a class, contains a private set of all the attributes, which
forms its “state” (the values of these attributes may change a lot during
the object lifetime)

m The class is a static entity that is always there, while its objects may
come and go (construct/destruct) during the program life

m Classes are related by several types of association such as
iInheritance, composition, and other kinds of reference of one class by
another
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Use-Case Diagrams

m One way to describe what a system does is to list many of
ItS usage scenarios

m A scenario is an example of how someone is using the
system (actor)

Student Create a Dealer

Create 3 Players
Simulate 300
Games
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Create a new Deck
of cards

These are 4
Different use cases



Use-Case Diagrams Goals

m Collect system requirements
The more use cases we have the more we know what are
our system requirements

m Use cases are great source for regression tests
Almost every use case can serve as a basis for one or more
regression tests

@ Communication
Use cases are a great basis for discussions and
brainstorming, between managers, tool architects, clients,
developers, testers, and company accountants
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Class Diagram

m Should display all the system classes and their relations

Person Address
Name S@reet
Phone Number 0.1 lives at 3 [EY
Email Address State
Postal Code
Purchase Parking Pass Country
? Validate
Output As Label
Student Professor

Salary

Student Number
Average Mark

Is Eligible To Enroll
Get Seminars Taken
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Class Diag

¢ Data members
¢ Methods

ram

m Names of abstract classes are in italics (Person)

m Every class in the system is represented by a box with three parts:
¢ Class name

m A relation between two classes is designhated by a connecting line with
(normal or dashed), a special arrow, and labels (adornments)

- city:String

- ZipCode:String
- state: String

- country:String

- email String i - lenders: Set<Person=
- userMame: String

- password: String
- address: Address

- distribution: Double
- currentlnitPrice; Float

Account Transaction Product
- name; String - unit: Double - name:String
- owners:Set<Person= - initialUnitPrice:Double _|— - description:String
- manager:Person —. transactionDate:Date [ - managementFee:Double
- Investments: List<Investment= - product: Product
+ currentValue()
accountTotal() i
l_ _ _ _ _ _
|
2> W
Address Person
- streetMame: String - firstiame: String Loan ManagedF und Cash
- streetMumber:String - lastName: String - interest Float - fundld:String - interestF loat
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Class Relation Types (1)

m Association

+ An association is a link connecting two classes

+ Indicates that (at least) one of the two related classes makes reference to

the other class

¢ One class is using the other class in order to perform its work

m Aggregation —<>

*

*

A special type of association

Aggregation means that one class is contained as a member (or element)
in the other class

The first class is called a member (or element) and the other class is
called a Container

Examples:

» In blackjack, a Card is an element of Deck
A Player object is an element of a Game object

» Listis a container of its members

Object Oriented Programming 31695 (Samy Zafrany) 10



Class Relation Types (2)
m Composition —p

+ A stronger type of aggregation in which the element is an essential part of
the container (in such case the term “component” is used)

+ Usually a data member that persist thru all the life cycle of the container
+ In Blackjack, a Hand object is a strong component of a Player object

¢ The string object Player.name is an essential part of Player

+ Any data member in a class is a component of that class

+ A Blackjack Card object is not a strong component of a Deck object, since
at any time it can be removed from the Deck and move to a Player Hand

m Generalization —D

¢ The classical is-a relationship (inheritance) in which one class is a
superclass of the other

+ In Blackjack, the Dealer class is a superclass of the Player class
+ This is more a relation between classes (than their objects)
+ An object of the second class is also an object of the first class!
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Association Types

Bidirectional Association

Unidirectional Association

Aggregation
Element/Container relationship

Generalization

_. Element/Container relationship
—>

Generalization
Element/Container relationship
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Shape2D All Associations in this diagram are of type
conter Generalization (inheritance)
;:fét::e, Note that Circle and Rectangle classes have
rotate both a getArea method (polymorphism), but
changeScala
Gaihine clearly Rectangle.getArea()
g:;gzj‘j::;ﬂ?‘*‘ is completely different than Circle.getArea()
Y (method override)
I |
EllipticalShape Polygon
semiMajorAxis getBoundingRect
/-,:-‘- getVertices
| | ‘,{'3 ,
Circle Ellipse SimplePolygon ArbitraryPolygon
rotate 59_"‘i':""";’°“°‘”i5 orientation points
rientanon
;}:;;215“"5 ortents oate addPoint
: fotate getQrientation ramovePoint
O Eomamta || hargeSesls o
g Rad; g gethrea 45 changeScale
e getPerimetarlength [ ] getArea
getBoundingRect Rectangle RegularPolygen || gelPerimeterLength
getQrientafion gefVertices
getSemiMaojorAxis | | height numPoints
getSemiMinorAxis | | width radius
getfocus] changeScale changeNumPaints
getfocus2 setH eight changeScale
setWidth gethrea
gethreq getParimeterlangth
getPerimeterlength | | getVertices
getVertices
getBoundingRect

Figure2.8 A hierarchy of shapes showing polymorphism and overriding
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H holiday
= name : EString
= startDate : EDate
= endDate : EDate
= shiftSchedule : EBoolean
@ displayListOfHolidays()
@ storeRecordToDB()
@ shiftSchedule()

H ExternalDBClass

add

@ createTable()
@ addRecord()
@ updateRecord()

[ <<datatype>> I

http://shikhaandroid.files.wordpress.com/2012/07/class-diagram.png

In this diagram we have three types of associations
—=>  Unidirectional Association

—@ Composition
—1{> Aggregation

Note that some association lines have two arrows!
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Blackjack Class Diagram (suggestion 0.1)

Game

dealer
players
log

open()
close()

run()
history()
is_finished()

1

1

2..6

state

Dealer
name
budget 1.Deck 0.52 [card
::::e — ¥ |cards rank
strategy shuffle() suit
deck draw_card() value()
shuffle()

0..52
Player | 0.l ~JHand
name cards
budget soft
hand add(card)
state value()
strategy
hit()
stand()
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Multiplicity and Adornments

m UML association line may contain

¢ An optional arrowhead that specifies the association type

+ Optional label at each end of line which specifies the multiplicity of
Instances of that entity (the potential number of objects that may

exist in the association)

+ At each end of the line, we can add a short label (“adornment”)

which details the kind of association

Multiplicity | Meaning

5 Five instances

0..1 None or One instance

l..] | to j instances

L. | or more instances (no upper limit)

0..* Any number of instances (including none)
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Class Dependency

Game 1 |Dealer Player 0.1 . |Hand
& > —<>

Game 2 6 Player
\ 4

Deck 0. 52 _|Card Hand 0.52 |Card
< <

Game 1 |string Player 1 |string

L 4 \ 4
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Class Dependency

m A class A is dependent on class B, if A is using B in one of the above
relationships

m Practically, it means that class B must be implemented first, before A
can do any work at all

m Dependency relations are extremely important (particularly for
managers) in order to have a tidy work plan

m In real life projects, classes are usually developed by several
developers, and class dependency is crucial for planning work timelines
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Sequence Diagram

m While class diagram depicts a static view of our system,
a sequence diagram is a dynamic view of the system in action

m A seqguence diagram models a control flow scenario of the
system arranged in a time sequence

¢ Time flows from top to bottom
+ The objects involved in the scenario appear from left to right
according to when they take part in the message sequence
m |t consists of several objects that interact with each other within
part or full life cycle (birth and death of objects)

B Sequence diagrams are associated with use case realization
within the UML model of the system under development.

B Sequence diagrams are sometimes called event
diagrams, event scenarios
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object

object

object

object

object

eli: Dealer

alice: Player

bob: Player

clod: Player

gl: Game

draw_card()
%

draw_card()
%

draw_card()
%

draw_card()
%

draw_card()

draw_card()
%

draw_card()

draw_card()
%

Hand()
é

deal(alice
g (alice)

alice.hand=Hand()

bob.hand=Hand()
«—

Clod.hand=Hand()
«—

deal(bob)

deal(clod)

No more space ...
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Resources for further study

m http://edn.embarcadero.com/article/31863

m http://en.wikipedia.org/wiki/Class diagram

m http://en.wikipedia.org/wiki/Unified Modeling Lanquage

m http://en.wikipedia.org/wiki/List of UML tools
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