UML

UNIFIED MODELLING LANGUAGE

EXEMPLIFIED ON BLACKJACK

Object Oriented Programming 31695 (Samy Zafrany) 1

http://www.mrgamez.com/double-exposure-blackjack
http://en.wikipedia.org/wiki/Unified_Modeling_Language

AGENDA

m Theoretically, before we write object-oriented code for solving a
problem, we need to design an abstract model which depicts the
essential features and hides all irrelevant details

m This is usually achieved by a bunch of Class Diagrams, Use-case
diagrams, object diagrams, etc.

m The standard framework for doing it is called UML™:

Unified Modeling Language

m This framework deserves a full course of its own, but in this presentation
we will exhibit some of its main ideas, exemplified on our Blackjack
project

Object Oriented Programming 31695 (Samy Zafrany) 2

UML - Unified Modeling Language

*

L 2

L 2

*

* o o

m UML has nine kinds of modeling diagrams:

Use-case diagrams

Class diagrams Object diagrams
Sequence diagrams
Collaboration diagrams
State-chart diagrams

Activity diagrams

Component diagrams
Deployment diagrams

m The relation of UML to OOP is like architect to builder
+ One must have a clear architectural plan before constructing a

physical building!

¢ The plan should enable easy communication between both !

Object Oriented Programming 31695 (Samy Zafrany)

UML - Basics

m As of today, UML has become the standard modelling language for
software analysts, architects, and programmers

m [t enables managers, clients, and programmers (in one or several
teams) to communicate efficiently when designing or refactoring
software systems, even if some of the participants are not professional
programmers

m UML is best tuned to object-oriented methodologies, therefore some
familiarity with OOP is required before learning UML

m A UML model is an abstract system which represents the objects and
the relations in our problem domain

m A UML model consist of abstract items (“objects”) that own attributes
and methods

m UML objects can interact with each other by “activating” each other (one
object can ask another object to invoke one of his method, or simply
getting one of his attributes)

Object Oriented Programming 31695 (Samy Zafrany) 4

UML - Basics

m A class is the architectural plan for objects of its kind

m A class consists of attributes (or data members) and behaviors (also
called methods)

m Objects are also knows as instances of a class

m Each object of a class, contains a private set of all the attributes, which
forms its “state” (the values of these attributes may change a lot during
the object lifetime)

m The class is a static entity that is always there, while its objects may
come and go (construct/destruct) during the program life

m Classes are related by several types of association such as
iInheritance, composition, and other kinds of reference of one class by
another

Object Oriented Programming 31695 (Samy Zafrany) 5

Use-Case Diagrams

m One way to describe what a system does is to list many of
ItS usage scenarios

m A scenario is an example of how someone is using the
system (actor)

Student Create a Dealer

Create 3 Players
Simulate 300
Games

Object Oriented Programming 31695 (Samy Zafrany) 6

Create a new Deck
of cards

These are 4
Different use cases

Use-Case Diagrams Goals

m Collect system requirements
The more use cases we have the more we know what are
our system requirements

m Use cases are great source for regression tests
Almost every use case can serve as a basis for one or more
regression tests

@ Communication
Use cases are a great basis for discussions and
brainstorming, between managers, tool architects, clients,
developers, testers, and company accountants

Object Oriented Programming 31695 (Samy Zafrany) 7

Class Diagram

m Should display all the system classes and their relations

Person Address
Name S@reet
Phone Number 0.1 lives at 3 [EY
Email Address State
Postal Code
Purchase Parking Pass Country
? Validate
Output As Label
Student Professor

Salary

Student Number
Average Mark

Is Eligible To Enroll
Get Seminars Taken

Object Oriented Programming 31695 (Samy Zafrany) 8

Class Diag

¢ Data members
¢ Methods

ram

m Names of abstract classes are in italics (Person)

m Every class in the system is represented by a box with three parts:
¢ Class name

m A relation between two classes is designhated by a connecting line with
(normal or dashed), a special arrow, and labels (adornments)

- city:String

- ZipCode:String
- state: String

- country:String

- email String i - lenders: Set<Person=
- userMame: String

- password: String
- address: Address

- distribution: Double
- currentlnitPrice; Float

Account Transaction Product
- name; String - unit: Double - name:String
- owners:Set<Person= - initialUnitPrice:Double _|— - description:String
- manager:Person —. transactionDate:Date [- managementFee:Double
- Investments: List<Investment= - product: Product
+ currentValue()
accountTotal() i
l_ _ _ _ _ _
|
2> W
Address Person
- streetMame: String - firstiame: String Loan ManagedF und Cash
- streetMumber:String - lastName: String - interest Float - fundld:String - interestF loat

Object Oriented Programming 31695 (Samy Zafrany)

Class Relation Types (1)

m Association

+ An association is a link connecting two classes

+ Indicates that (at least) one of the two related classes makes reference to

the other class

¢ One class is using the other class in order to perform its work

m Aggregation —<>

*

*

A special type of association

Aggregation means that one class is contained as a member (or element)
in the other class

The first class is called a member (or element) and the other class is
called a Container

Examples:

» In blackjack, a Card is an element of Deck
A Player object is an element of a Game object

» Listis a container of its members

Object Oriented Programming 31695 (Samy Zafrany) 10

Class Relation Types (2)
m Composition —p

+ A stronger type of aggregation in which the element is an essential part of
the container (in such case the term “component” is used)

+ Usually a data member that persist thru all the life cycle of the container
+ In Blackjack, a Hand object is a strong component of a Player object

¢ The string object Player.name is an essential part of Player

+ Any data member in a class is a component of that class

+ A Blackjack Card object is not a strong component of a Deck object, since
at any time it can be removed from the Deck and move to a Player Hand

m Generalization —D

¢ The classical is-a relationship (inheritance) in which one class is a
superclass of the other

+ In Blackjack, the Dealer class is a superclass of the Player class
+ This is more a relation between classes (than their objects)
+ An object of the second class is also an object of the first class!

Object Oriented Programming 31695 (Samy Zafrany) 11

Association Types

Bidirectional Association

Unidirectional Association

Aggregation
Element/Container relationship

Generalization

_. Element/Container relationship
—>

Generalization
Element/Container relationship

Object Oriented Programming 31695 (Samy Zafrany) 12

http://www2.cs.uidaho.edu/~jeffery/courses/383/lecture.html

Shape2D All Associations in this diagram are of type
conter Generalization (inheritance)
;:fét::e, Note that Circle and Rectangle classes have
rotate both a getArea method (polymorphism), but
changeScala
Gaihine clearly Rectangle.getArea()
g:;gzj‘j::;ﬂ?‘*‘ is completely different than Circle.getArea()
Y (method override)
I |
EllipticalShape Polygon
semiMajorAxis getBoundingRect
/-,:-‘- getVertices
| | ‘,{'3 ,
Circle Ellipse SimplePolygon ArbitraryPolygon
rotate 59_"‘i':""";’°“°‘”i5 orientation points
rientanon
;}:;;215“"5 ortents oate addPoint
: fotate getQrientation ramovePoint
O Eomamta || hargeSesls o
g Rad; g gethrea 45 changeScale
e getPerimetarlength [] getArea
getBoundingRect Rectangle RegularPolygen || gelPerimeterLength
getQrientafion gefVertices
getSemiMaojorAxis | | height numPoints
getSemiMinorAxis | | width radius
getfocus] changeScale changeNumPaints
getfocus2 setH eight changeScale
setWidth gethrea
gethreq getParimeterlangth
getPerimeterlength | | getVertices
getVertices
getBoundingRect

Figure2.8 A hierarchy of shapes showing polymorphism and overriding

Object Oriented Programming 31695 (Samy Zafrany)

13

http://www2.cs.uidaho.edu/~jeffery/courses/383/lecture.html

student
= B = B Seimiesiee storeDataln
name : Estring © name : EString H course H exam
@ addSemester() adds © ctartDate : EDate & = color : EString o date : EDate
: addCourse() 0.1 |= endDate : EDate ‘-contain\li—). = title : EString e o startTlme : Flme
0 assClassSchedule() @ displayList0) o S grades : EChar ~ o endT.|me :tlm_e
. a .
addpartner() @ storeRecordToDB(® displayListofCourse(location : EString
@ shiftSchedule(= weight : Elnt
@ storeRecordToDB() : :
- T :) P \ 9 instructor : EString
contains : assignmen 2 has _ : - @ displayList(
©= npame : EString 1. contains H single @ storeRecordToDB()
© dueDate : EDate = o date : EDate
= priority : EString e il ofe stores
© reminder : reminderDT = startTime : time | 0.* 0.* o
© partner : EString = endTime : time H InternalDBClass
@ jsCompleted : EBoolean = repegt : Estnn'g <}—l
= weight : EInt = |ocation : EString E regular @ createTables()
@ displayList(S instructor : EString © startDate : EDate @ addRecord()
@ displayListofCompletedassignmen| | & displayListofClassQ ZEndpdte: EBee @ updateTableso
@ storeRecordToDB @ ypdateRecord()
0.# @ storeRecordToDB() 0
" @ retrieveRecordFromDB() storeData;n* shoteData 4

H holiday
= name : EString
= startDate : EDate
= endDate : EDate
= shiftSchedule : EBoolean
@ displayListOfHolidays()
@ storeRecordToDB()
@ shiftSchedule()

H ExternalDBClass

add

@ createTable()
@ addRecord()
@ updateRecord()

[<<datatype>> I

http://shikhaandroid.files.wordpress.com/2012/07/class-diagram.png

In this diagram we have three types of associations
—=> Unidirectional Association

—@ Composition
—1{> Aggregation

Note that some association lines have two arrows!

Object Oriented Programming 31695 (Samy Zafrany)

http://shikhaandroid.files.wordpress.com/2012/07/class-diagram.png

Blackjack Class Diagram (suggestion 0.1)

Game

dealer
players
log

open()
close()

run()
history()
is_finished()

1

1

2..6

state

Dealer
name
budget 1.Deck 0.52 [card
::::e — ¥ |cards rank
strategy shuffle() suit
deck draw_card() value()
shuffle()

0..52
Player | 0.l ~JHand
name cards
budget soft
hand add(card)
state value()
strategy
hit()
stand()

Object Oriented Programming 31695 (Samy Zafrany)

15

Multiplicity and Adornments

m UML association line may contain

¢ An optional arrowhead that specifies the association type

+ Optional label at each end of line which specifies the multiplicity of
Instances of that entity (the potential number of objects that may

exist in the association)

+ At each end of the line, we can add a short label (“adornment”)

which details the kind of association

Multiplicity | Meaning

5 Five instances

0..1 None or One instance

l..] | to j instances

L. | or more instances (no upper limit)

0..* Any number of instances (including none)

Object Oriented Programming 31695 (Samy Zafrany)

16

Class Dependency

Game 1 |Dealer Player 0.1 . |Hand
& > —<>

Game 2 6 Player
\ 4

Deck 0. 52 _|Card Hand 0.52 |Card
< <

Game 1 |string Player 1 |string

L 4 \ 4

Object Oriented Programming 31695 (Samy Zafrany) 17

Class Dependency

m A class A is dependent on class B, if A is using B in one of the above
relationships

m Practically, it means that class B must be implemented first, before A
can do any work at all

m Dependency relations are extremely important (particularly for
managers) in order to have a tidy work plan

m In real life projects, classes are usually developed by several
developers, and class dependency is crucial for planning work timelines

Object Oriented Programming 31695 (Samy Zafrany) 18

Sequence Diagram

m While class diagram depicts a static view of our system,
a sequence diagram is a dynamic view of the system in action

m A seqguence diagram models a control flow scenario of the
system arranged in a time sequence

¢ Time flows from top to bottom
+ The objects involved in the scenario appear from left to right
according to when they take part in the message sequence
m |t consists of several objects that interact with each other within
part or full life cycle (birth and death of objects)

B Sequence diagrams are associated with use case realization
within the UML model of the system under development.

B Sequence diagrams are sometimes called event
diagrams, event scenarios

Object Oriented Programming 31695 (Samy Zafrany) 19

object

object

object

object

object

eli: Dealer

alice: Player

bob: Player

clod: Player

gl: Game

draw_card()
%

draw_card()
%

draw_card()
%

draw_card()
%

draw_card()

draw_card()
%

draw_card()

draw_card()
%

Hand()
é

deal(alice
g (alice)

alice.hand=Hand()

bob.hand=Hand()
«—

Clod.hand=Hand()
«—

deal(bob)

deal(clod)

No more space ...

Object Oriented Programming 31695 (Samy Zafrany)

< run()
<€<— open()

20

Resources for further study

m http://edn.embarcadero.com/article/31863

m http://en.wikipedia.org/wiki/Class diagram

m http://en.wikipedia.org/wiki/Unified Modeling Lanquage

m http://en.wikipedia.org/wiki/List of UML tools

Object Oriented Programming 31695 (Samy Zafrany) 21

http://edn.embarcadero.com/article/31863
http://edn.embarcadero.com/article/31863
http://edn.embarcadero.com/article/31863
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/List_of_UML_tools
http://en.wikipedia.org/wiki/List_of_UML_tools

