
1 Object Oriented Programming 31695 (Samy Zafrany)

UNIFIED MODELLING LANGUAGE
EXEMPLIFIED ON BLACKJACK

UML

http://www.mrgamez.com/double-exposure-blackjack
http://en.wikipedia.org/wiki/Unified_Modeling_Language

2 Object Oriented Programming 31695 (Samy Zafrany)

 Theoretically, before we write object-oriented code for solving a

problem, we need to design an abstract model which depicts the

essential features and hides all irrelevant details

 This is usually achieved by a bunch of Class Diagrams, Use-case

diagrams, object diagrams, etc.

 The standard framework for doing it is called UML™:

 Unified Modeling Language

 This framework deserves a full course of its own, but in this presentation

we will exhibit some of its main ideas, exemplified on our Blackjack

project

3 Object Oriented Programming 31695 (Samy Zafrany)

 UML has nine kinds of modeling diagrams:

 Use-case diagrams

 Class diagrams Object diagrams

 Sequence diagrams

 Collaboration diagrams

 State-chart diagrams

 Activity diagrams

 Component diagrams

 Deployment diagrams

 The relation of UML to OOP is like architect to builder

 One must have a clear architectural plan before constructing a

physical building!

 The plan should enable easy communication between both !

4 Object Oriented Programming 31695 (Samy Zafrany)

 As of today, UML has become the standard modelling language for

software analysts, architects, and programmers

 It enables managers, clients, and programmers (in one or several

teams) to communicate efficiently when designing or refactoring

software systems, even if some of the participants are not professional

programmers

 UML is best tuned to object-oriented methodologies, therefore some

familiarity with OOP is required before learning UML

 A UML model is an abstract system which represents the objects and

the relations in our problem domain

 A UML model consist of abstract items (“objects”) that own attributes

and methods

 UML objects can interact with each other by “activating” each other (one

object can ask another object to invoke one of his method, or simply

getting one of his attributes)

5 Object Oriented Programming 31695 (Samy Zafrany)

 A class is the architectural plan for objects of its kind

 A class consists of attributes (or data members) and behaviors (also

called methods)

 Objects are also knows as instances of a class

 Each object of a class, contains a private set of all the attributes, which

forms its “state” (the values of these attributes may change a lot during

the object lifetime)

 The class is a static entity that is always there, while its objects may

come and go (construct/destruct) during the program life

 Classes are related by several types of association such as

inheritance, composition, and other kinds of reference of one class by

another

6 Object Oriented Programming 31695 (Samy Zafrany)

 One way to describe what a system does is to list many of

its usage scenarios

 A scenario is an example of how someone is using the

system (actor)

Create a new Deck

of cards

Create a Dealer

Create 3 Players
Simulate 300

Games

These are 4

Different use cases

7 Object Oriented Programming 31695 (Samy Zafrany)

 Collect system requirements

The more use cases we have the more we know what are

our system requirements

 Use cases are great source for regression tests

Almost every use case can serve as a basis for one or more

regression tests

 Communication

Use cases are a great basis for discussions and

brainstorming, between managers, tool architects, clients,

developers, testers, and company accountants

8 Object Oriented Programming 31695 (Samy Zafrany)

 Should display all the system classes and their relations

9 Object Oriented Programming 31695 (Samy Zafrany)

 Every class in the system is represented by a box with three parts:

 Class name

 Data members

 Methods

 Names of abstract classes are in italics (Person)

 A relation between two classes is designated by a connecting line with

(normal or dashed), a special arrow, and labels (adornments)

10 Object Oriented Programming 31695 (Samy Zafrany)

 Association

 An association is a link connecting two classes

 Indicates that (at least) one of the two related classes makes reference to

the other class

 One class is using the other class in order to perform its work

 Aggregation

 A special type of association

 Aggregation means that one class is contained as a member (or element)

in the other class

 The first class is called a member (or element) and the other class is

called a Container

 Examples:

 In blackjack, a Card is an element of Deck

A Player object is an element of a Game object

 List is a container of its members

11 Object Oriented Programming 31695 (Samy Zafrany)

 Composition

 A stronger type of aggregation in which the element is an essential part of

the container (in such case the term “component” is used)

 Usually a data member that persist thru all the life cycle of the container

 In Blackjack, a Hand object is a strong component of a Player object

 The string object Player.name is an essential part of Player

 Any data member in a class is a component of that class

 A Blackjack Card object is not a strong component of a Deck object, since

at any time it can be removed from the Deck and move to a Player Hand

 Generalization

 The classical is-a relationship (inheritance) in which one class is a

superclass of the other

 In Blackjack, the Dealer class is a superclass of the Player class

 This is more a relation between classes (than their objects)

 An object of the second class is also an object of the first class!

12 Object Oriented Programming 31695 (Samy Zafrany)

Bidirectional Association

Association Unidirectional

Aggregation

Element/Container relationship

Generalization

Element/Container relationship

Generalization

Element/Container relationship

Association Types

13 Object Oriented Programming 31695 (Samy Zafrany)

http://www2.cs.uidaho.edu/~jeffery/courses/383/lecture.html

All Associations in this diagram are of type

Generalization (inheritance)

Note that Circle and Rectangle classes have

both a getArea method (polymorphism), but

clearly Rectangle.getArea()

is completely different than Circle.getArea()

(method override)

http://www2.cs.uidaho.edu/~jeffery/courses/383/lecture.html

14 Object Oriented Programming 31695 (Samy Zafrany)

http://shikhaandroid.files.wordpress.com/2012/07/class-diagram.png

In this diagram we have three types of associations

 Unidirectional Association

 Composition

 Aggregation

Note that some association lines have two arrows!

http://shikhaandroid.files.wordpress.com/2012/07/class-diagram.png

15 Object Oriented Programming 31695 (Samy Zafrany)

Card
rank
suit

value()

Player
name
budget
hand
state
strategy

hit()
stand()

Deck
cards

shuffle()
draw_card()

Hand
cards
soft

add(card)
value()

Dealer
name
budget
hand
state
strategy
deck

shuffle()
Game
dealer
players
log

open()
close()
run()
history()
is_finished()

2..6

1

1 0..52

0..1

string

1

log

1 state

Blackjack Class Diagram (suggestion 0.1)

0..52

16 Object Oriented Programming 31695 (Samy Zafrany)

 UML association line may contain

 An optional arrowhead that specifies the association type

 Optional label at each end of line which specifies the multiplicity of

instances of that entity (the potential number of objects that may

exist in the association)

 At each end of the line, we can add a short label (“adornment”)

which details the kind of association

Meaning Multiplicity

Five instances 5

None or One instance 0..1

i to j instances i..j

i or more instances (no upper limit) i..*

Any number of instances (including none) 0..*

17 Object Oriented Programming 31695 (Samy Zafrany)

Card

Player

Deck Hand

Dealer Game

string

Hand

Card

Game Player string

Game Player 2..6

1

0..52

0..1

0..52

1 1

Class Dependency

18 Object Oriented Programming 31695 (Samy Zafrany)

 A class A is dependent on class B, if A is using B in one of the above

relationships

 Practically, it means that class B must be implemented first, before A

can do any work at all

 Dependency relations are extremely important (particularly for

managers) in order to have a tidy work plan

 In real life projects, classes are usually developed by several

developers, and class dependency is crucial for planning work timelines

19 Object Oriented Programming 31695 (Samy Zafrany)

 While class diagram depicts a static view of our system,

a sequence diagram is a dynamic view of the system in action

 A sequence diagram models a control flow scenario of the

system arranged in a time sequence

 Time flows from top to bottom

 The objects involved in the scenario appear from left to right

according to when they take part in the message sequence

 It consists of several objects that interact with each other within

part or full life cycle (birth and death of objects)

 Sequence diagrams are associated with use case realization

within the UML model of the system under development.

 Sequence diagrams are sometimes called event

diagrams, event scenarios

20 Object Oriented Programming 31695 (Samy Zafrany)

eli: Dealer

object

alice: Player

object

bob: Player

object

clod: Player

object

g1: Game

object

run()

open() draw_card()

alice.hand=Hand()

draw_card()

bob.hand=Hand()

Clod.hand=Hand()

draw_card()

draw_card()

draw_card()

draw_card()

draw_card()

draw_card()

Hand()

deal(alice)

deal(bob)

deal(clod)

No more space …

21 Object Oriented Programming 31695 (Samy Zafrany)

 http://edn.embarcadero.com/article/31863

 http://en.wikipedia.org/wiki/Class_diagram

 http://en.wikipedia.org/wiki/Unified_Modeling_Language

 http://en.wikipedia.org/wiki/List_of_UML_tools

http://edn.embarcadero.com/article/31863
http://edn.embarcadero.com/article/31863
http://edn.embarcadero.com/article/31863
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/List_of_UML_tools
http://en.wikipedia.org/wiki/List_of_UML_tools

