
1Object Oriented Programming 31695 (Samy Zafrany)

SUDOKU

Object Oriented Programming 31695

Final Course Project

2Object Oriented Programming 31695 (Samy Zafrany)

 Download sudoku.zip from:
http://www.samyzaf.com/braude/OOP/PROJECTS/sudoku.zip

 Unzip this file in drive C (or D), so your project will

reside in: C:\sudoku (or D:\sudoku)

 You will find there all the files you need for the project

 You can also access individual files from:
http://www.samyzaf.com/braude/OOP/PROJECTS/Sudoku

 Make sure to edit the README.txt file and enter all

the required information (name, email, phones, etc.)

 After completing your project, you should zip this

directory back to sudoku.zip and upload it to:

http://www.samyzaf.com/braude/OOP/upload.html

http://www.samyzaf.com/braude/OOP/PROJECTS/sudoku.zip
http://www.samyzaf.com/braude/OOP/PROJECTS/Sudoku
http://www.samyzaf.com/braude/OOP/upload.html

3Object Oriented Programming 31695 (Samy Zafrany)

 Deadline: June 07, 2014 (till midnight)

 Upload site will be closed after this date!

 Work in pairs is OK (but not triples!)

 A 30 minutes project review will be held for each partner

separately!

 Office slots for project reviews will be posted early June

 Use the scheduling tool to schedule a meeting:

http://www.samyzaf.com/cgi-bin/appsched.cgi

http://www.samyzaf.com/cgi-bin/appsched.cgi

4Object Oriented Programming 31695 (Samy Zafrany)

 Information based on Project Euler: http://projecteuler.net

 The objective of a SuDoKu puzzle is to replace the blanks (or zeroes) in a 9x9

grid such that each row, column, and 3x3 box contains each of the digits 1 to 9

 The Diagonal-SuDoKu puzzle requires each diagonal contains all 1-9 digits

 Below is a textual display of a typical puzzle grid and its solution grid:

SUDOKU PUZZLE SOLUTION

+-------+-------+-------+ +-------+-------+-------+
0 0 3	0 2 0	6 0 0		4 8 3	9 2 1	6 5 7
9 0 0	3 0 5	0 0 1		9 6 7	3 4 5	8 2 1
0 0 1	8 0 6	4 0 0		2 5 1	8 7 6	4 9 3
+-------+-------+-------- --------+-------+-------+						
0 0 8	1 0 2	9 0 0		5 4 8	1 3 2	9 7 6
7 0 0	0 0 0	0 0 8		7 2 9	5 6 4	1 3 8
0 0 6	7 0 8	2 0 0		1 3 6	7 9 8	2 4 5
+-------+-------+-------- ----------------+-------+						
0 0 2	6 0 9	5 0 0		3 7 2	6 8 9	5 1 4
8 0 0	2 0 3	0 0 9		8 1 4	2 5 3	7 6 9
0 0 5	0 1 0	3 0 0		6 9 5	4 1 7	3 8 2
+-------+-------+-------+ +-------+-------+-------+

http://projecteuler.net/

5Object Oriented Programming 31695 (Samy Zafrany)

 We will also be interested in drawing SuDoKu diagrams on top of a

graphical canvas as shown here:

SUDOKU PUZZLE SOLUTION

6Object Oriented Programming 31695 (Samy Zafrany)

 A well constructed SuDoku puzzle has a unique solution and can be

solved by logic, although it may be necessary to employ "guess and

test" methods in order to eliminate options (there is much contested

opinion over this).

 The complexity of the search determines the difficulty of the puzzle

 the example above is considered easy because it can be solved by

straight forward direct deduction

7Object Oriented Programming 31695 (Samy Zafrany)

http://www.mirror.co.uk/news/weird-news/worlds-hardest-sudoku-can-you-242294

8Object Oriented Programming 31695 (Samy Zafrany)

USA Today Journal, June 11 2006

Can your program solve this one?

9Object Oriented Programming 31695 (Samy Zafrany)

 The zip package you have downloaded contains several

puzzle databases

 easy10.txt

 These are 10 very easy puzzles you should use for tests

 Your program should handle these puzzles very quickly!

(so you don’t have to wait to long for tests)

 top160.txt

 A set of 160 very difficult puzzles

 top2500.txt

 If you need more: database with 2500 puzzles

 diag200.txt

 200 diagonal Sudoku puzzles

10Object Oriented Programming 31695 (Samy Zafrany)

 You need to

 Build classes: Cell, Sudoku, Sudokiller, Partition

 Define several function for reading puzzles from files, finding all the

possible solutions of a Sudoku puzzle, and printing solutions in a pretty

format (textual and graphical!)

 Use the files:

 cell.py

 sudoku.py

 sudokiller.py

 file_solver.py

 Make sure to follow the directions there precisely, and complete the

missing code so that they eventually work

11Object Oriented Programming 31695 (Samy Zafrany)

 The graphics that we use for drawing our Sudoku boards are:
graphics.py

point.py

line.py

rectangle.py

 These files are contained in the sudoku.zip package, so you do not have

to download them

 These files implement our basic graphical environment. Specifically, it

defines a canvas window on which we can draw points, lines,

rectangles, and other geometrical shapes

 There is no need to read or understand the code in these modules,

you’re only required to use it for drawing your Sudoku puzzles

 If you want to learn more about the Tkinter graphics programming, you

may start with: http://www.tkdocs.com/tutorial/

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/PROJECTS/Sudoku/graphics.py
http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/PROJECTS/Sudoku/point.py
http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/PROJECTS/Sudoku/line.py
hhttp://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/PROJECTS/Sudoku/rectangle.py
http://www.tkdocs.com/tutorial/

12Object Oriented Programming 31695 (Samy Zafrany)

Task 1: Cell Class

class Cell(Rectangle):
size = 30
font = "Consolas 12 bold"
color = "Maroon"
outline = "black"
def __init__(self, data=0):

Rectangle.__init__(self, 0, 0, self.size, self.size)
self._data = data
self.id = 0 # Canvas id

def data(self, new_data=None):
Two uses:
1. Change the Cell data to new_data: c.data(7)
2. Return the current data: c.data()

def draw(self):
Draw Cell object on the canvas
Graphics should consist of a Rectangle object and a text label
Label is: 1, 2, 3, ..., 9
An empty cell (0) has no label
Key command:
canvas.create_text(p.x, p.y, text=label, font=self.font, fill=self.color)
p is the Cell center Point

13Object Oriented Programming 31695 (Samy Zafrany)

Cell Class Test

def Cell_test():
a = Cell(7)
b = Cell(2)
c = Cell(0)
a.place(200,130)
b.place(70,105)
c.place(230,180)
a.draw()
b.draw()
c.draw()
print c.size
show_canvas()

 If you have designed your Cell class well, then it should

pass the following test

14Object Oriented Programming 31695 (Samy Zafrany)

Task 2: Sudoku Class

 Edit the file sudoku.py and complete the needed work

there

 Please follow the class structure and make sure you find all

the solutions to the puzzle (not the first one only!)

15Object Oriented Programming 31695 (Samy Zafrany)

Sudoku Constructor

puzzle1 = """
0 0 3 0 2 0 6 0 0
9 0 0 3 0 5 0 0 1
0 0 1 8 0 6 4 0 0
0 0 8 1 0 2 9 0 0
7 0 0 0 0 0 0 0 8
0 0 6 7 0 8 2 0 0
0 0 2 6 0 9 5 0 0
8 0 0 2 0 3 0 0 9
0 0 5 0 1 0 3 0 0

"""

puzzle2 = "005080700 700204005 320000084 060105040 008000500 070803010 450000091 600508007 003010600"

puzzle3 = "4.....8.5.3..........7......2.....6.....5.4......1.......6.3.7.5..2.....1.9......"

s1 = Sudoku(puzzle1)
s2 = Sudoku(puzzle2)
s3 = Sudoku(puzzle3)

HINT: All we need to do is read 81 digits ! We simply skip everything else!

16Object Oriented Programming 31695 (Samy Zafrany)

Sudoku Constructor (more)

Even this should work !
puzzle4 = """

+-------+-------+-------+
0 0 3	0 2 0	6 0 0
9 0 0	3 0 5	0 0 1
0 0 1	8 0 6	4 0 0
+-------+-------+--------		
0 0 8	1 0 2	9 0 0
7 0 0	0 0 0	0 0 8
0 0 6	7 0 8	2 0 0
+-------+-------+--------		
0 0 2	6 0 9	5 0 0
8 0 0	2 0 3	0 0 9
0 0 5	0 1 0	3 0 0
+-------+-------+-------+

"""

s = Sudoku(puzzle4)

After reading the input, we may do all kinds of methods:
s.draw()
print s.is_valid()
s.solve()

17Object Oriented Programming 31695 (Samy Zafrany)

Cell Storage

puzzle = """
0 0 3 0 2 0 6 0 0
9 0 0 3 0 5 0 0 1
0 0 1 8 0 6 4 0 0
0 0 8 1 0 2 9 0 0
7 0 0 0 0 0 0 0 8
0 0 6 7 0 8 2 0 0
0 0 2 6 0 9 5 0 0
8 0 0 2 0 3 0 0 9
0 0 5 0 1 0 3 0 0

"""

s consists of 81 ints stored in a dictionary: s.cell:
s = Sudoku(puzzle)
for i,j in s.cell:

print s.cell[i,j]

for i,j in s.cell:
s.cell[i,j] = 0

18Object Oriented Programming 31695 (Samy Zafrany)

 There are two methods for displaying a Sudoku object:

 print s

 s.draw()

Hint: The cells are Rectangle objects

with a label in the middle.

The blue blocks can be 9 Rectangles

or a simple draw_grid() – (8 Lines)

+-------+-------+-------+
4 8 3	9 2 1	6 5 7
9 6 7	3 4 5	8 2 1
2 5 1	8 7 6	4 9 3
--------+-------+-------+		
5 4 8	1 3 2	9 7 6
7 2 9	5 6 4	1 3 8
1 3 6	7 9 8	2 4 5
----------------+-------+		
3 7 2	6 8 9	5 1 4
8 1 4	2 5 3	7 6 9
6 9 5	4 1 7	3 8 2
+-------+-------+-------+

19Object Oriented Programming 31695 (Samy Zafrany)

row(), col(), block(), diagonals()

1 2 3 4 5 6 7 8 9
+-------+-------+-------+

1 | 0 0 3 | 0 2 0 | 6 0 0 |
2 | 9 0 0 | 3 0 5 | 0 0 1 |
3 | 0 0 1 | 8 0 6 | 4 0 0 |

+-------+-------+--------
4 | 0 0 8 | 1 0 2 | 9 0 0 |
5 | 7 0 0 | 0 0 0 | 0 0 8 | (puzzle4)
6 | 0 0 6 | 7 0 8 | 2 0 0 |

+-------+-------+--------
7 | 0 0 2 | 6 0 9 | 5 0 0 |
8 | 8 0 0 | 2 0 3 | 0 0 9 |
9 | 0 0 5 | 0 1 0 | 3 0 0 |

+-------+-------+-------+

s = Sudoku(puzzle4)

s.row(2) => [9, 0, 0, 3, 0, 5, 0, 0, 1]
s.row(5) => [7, 0, 0, 0, 0, 0, 0, 0, 8]
s.col(2) => [0, 0, 0, 0, 0, 0, 0, 0, 0]
s.col(5) => [2, 0, 0, 0, 0, 0, 0, 0, 1]
s.block(4,5) => [1, 0, 2, 0, 0, 0, 7, 0, 8]
s.diagonals() => ([0, 0, 1, 1, 0, 8, 5, 0, 0], [0, 0, 4, 2, 0, 7, 2, 0, 0])

20Object Oriented Programming 31695 (Samy Zafrany)

Task 3: Sudoku Solver

This is the hardest part of the project !!!
You will need to design a method:
def solve(self):

self is our Sudoku puzzle instance
All solutions should go into a list self.solutions

21Object Oriented Programming 31695 (Samy Zafrany)

 For any cell compute the list of valid values

 Example: Valid values of cell (4,1) = 3, 4, 5

 Start by computing what cannot be in the cell

 A cell (i,j) is called a singleton if it has exactly

one valid value

 Example: Cell (5,6) is a singleton!

 What is his single valid value?

 A good strategy is to first fill the singleton cells!

 After solving singletons

 The number of valid values in other cells will be reduced and will make the

puzzle easier

 After solving all singletons, you will get new singletons …

 So you may need to repeat singleton resolution again …

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

22Object Oriented Programming 31695 (Samy Zafrany)

 An invalid cell is a cell that cannot be assigned any

valid value

 After resolving all singletons, all remaining cells

have multiple valid values

 The simplest strategy is to select a cell, compute

his valid values, and try them all one by one

 Once you have selected a valid value and inserted

it to the cell, you get a new puzzle with a smaller

set of options!

 You may use recursion and send the new puzzle and then call yourself

recursively !

23Object Oriented Programming 31695 (Samy Zafrany)

 Edit the file: file_solver.py

 You will find there the skeleton for the needed function

 You have to design a function solve_sudoku_file(file) which accepts a

file name of Sudoku puzzles (like top160.txt) and solves all the puzzles

in the file

 You have to write all the solutions in a new file (like: top160.sol)

 See next slide for the format in which the solutions should be written

24Object Oriented Programming 31695 (Samy Zafrany)

top160.txt

top160.sol

This is the database of 160 difficult puzzle

which you will find in your Sudoku directory

25Object Oriented Programming 31695 (Samy Zafrany)

Sudokiller (Bonus)

 The project grade weight is 30% but Sudokiller problem can raise it 45%

 An algorithm for solving Killer Sudoku puzzles can earn you extra 15%

weight to your course grade! (so project grade is 45%)

 A Sudokiller puzzle consists of a partition of the board to cages. The

number on each cage is the sum of the

cells in the cage

 You must design the needed data

structures and the algorithms

needed for solving any sudokiller puzzle

in a reasonable time frame (the faster

the better your grade is …)

 The following puzzle has exactly two

solutions.

How fast can you find them?

26Object Oriented Programming 31695 (Samy Zafrany)

Diagonal Sudokiller

 The following three Sudokiller puzzles have also a diagonal solution

 You algorithm should also support diagonals too!

 Make sure the runtime of your programs does not exceed 10 hours

(even for the hardest problem)

27Object Oriented Programming 31695 (Samy Zafrany)

Sudokiller (puzzle #3)

28Object Oriented Programming 31695 (Samy Zafrany)

Diagonal Sudokiller (puzzle #4)

 This puzzle has two solutions, diagonals included!

 You must find them both

