Project 5

SORTING

Problem 1: insertion Sort

■ Download the file insertion sort.py and try to understand the insertion sort algorithm which is implemented there

- Write an English description (or Hebrew if you must to ...) which outlines the insertion sort algorithm
- Use the module sort bench.py to conduct a run time benchmark of this algorithm like we did in class (use the same list sizes and other parameters)

Problem 2: Heap Sort

- A list L of integers is called a heap if it satisfies the heap property:
For every k : $\mathrm{L}[\mathrm{k}]<=\mathrm{L}[* 2 \mathrm{k}+1]$ and $\mathrm{L}[k]<=\mathrm{L}\left[2^{*} \mathrm{k}+2\right]$
Read more: http://docs.python.org/2/library/heapq.html
- Download the file heap sort.py and try to understand the heap sort algorithm which is implemented there
- Write an English description (or Hebrew if you must to ...) which outlines the heap sort algorithm
- Use the module sort bench.py to conduct a run time benchmark of this algorithm like we did in class (use the same list sizes and other parameters)

Problem 3: Remove Duplicates

- Describe and analyze an efficient method for removing all duplicates from a list L of n elements
- After removing duplicates, the remaining elements should retain the order they had before
- Exmaple:

$$
\begin{aligned}
& L=[7,2,2,5,7,2,1,7,3] \\
& \text { remove_dups }(L)=>[7,2,5,1,3] \\
& L=[5,0,1,0,9,2,1,0,5] \\
& \text { remove_dups }(L)=>[5,0,1,9,2]
\end{aligned}
$$

Problem 4: has_dup

- Given a list L of n integers, write an efficient algorithm has_dup for determining whether there are two equal elements in L
- What is the running time of your method? Is it the best running time possible?
- Examples:

```
L = [5,1,0,4,2,9,7,4,3]
has_dup(L) => True
L = [1,2,3]
has_dup(L) => False
```


Problem 5: is_elements_sum

- Let A and B be two lists of n integers each. Given an integer m, write an $O(n \log n)$-time algorithm is_elements_sum for determining if there is an integer a in A and an integer b in B such that $m=a+b$

$$
\begin{aligned}
& A=[5,1,0,4,2,9] \\
& B=[2,4,0,7,1,8] \\
& m=13 \\
& \text { is_elements_sum(m, A, B) } \\
& \Rightarrow \text { True! } 13=9+4 \text { (or } 5+8) \\
& \text { is_elements_sum(18, A, B) } \\
& \Rightarrow \text { False }
\end{aligned}
$$

Problem 6

- If L is a list of n integers smaller than $\mathrm{n}^{* *} 3$ then it can be sorted in $\mathrm{O}(\mathrm{n})$ time
- Find such an algorithm and prove that its time complexity is $\mathrm{O}(\mathrm{n})$
■ Hint: look again on Radix sort

