Shortest Paths

@ : 3 L

ton St

H
NardTwo % @ Central >
D EY Square ~
%
N Ca A"‘Jr Thompson
Mbridge st Square /
Bunker.Hill
rea |V
Main §
s }
E a8
' Charles i geec?
River Basin 7 Downtown
o% JQ
% *a %
Back Bay -3 ‘ %, 4
% @ - s G @
..... 5P = f 2
2 s o
- <& :“‘-' N Qtraat { WNlact

Intemational
Airport

o
= -
o ¢ F Qe 1B
CHNL)—2555 e VA hile 3

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths

Weighted Graphs

o Inaweighted graph, each edge has an associated numerical

Y value, called the weight of the edge
o Edge weights may represent, distances, costs, etc.

o Example:

= Ina flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

= What is the shortest path from HNL to PVD ?

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths

Shortest Paths

Q

Given a weighted graph and two vertices u and v, we want to
find a path of minimum total weight between u and v.

= Length of a path is the sum of the weights of its edges.
o Example:

= Shortest path between Providence and Honolulu
o Applications

= Internet packet routing

» Flight reservations

= Driving directions

© 2013 Goodrich, Tamassia, Goldwasser

Shortest Paths

Shortest Path Properties

_E

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths

N

o The distance of a vertex
v from a vertex s is the
length of a shortest path
between s and v

o Dijkstra’ s algorithm
computes the distances
of all the vertices from a
given start vertex s
o Assumptions:
= the graph is connected
= the edges are directed

= the edge weights are
nonnegative

Q

Dijkstra’ s Algorithm

We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

We store with each vertex v a
label d(v) representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices

At each step

» We add to the cloud the vertex
u outside the cloud with the
smallest distance label, d(u)

= We update the labels of the
vertices adjacent to u

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 5

Cloud Progresssion

© 2013 Goodrich, Tamassia, Goldwasser

Correctness Proof

© 2013 Goodrich, Tamassia, Goldwasser

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 8

Example (cont.)

N

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 9

Dijkstra’ s Algorithm

def dijkstra(g, src):

cloud = {src: 0} # cloud of visited vertices/edges and their distance from src
gps = {} # gps dictionary maps a vertex to edge toward source src
—E;r———distante—=—{}— # distance dictionary: distance[u] = min distance from u to src

vertices = set(g.vertices())

vertices.remove(src) # src is the single element currently in cloud

distance[src] = © # distance from src to itself is ©

for u in vertices: # distance of any other vertex to source is infinity
distance[u] = float('Infinity')

while True:
Construct the next ring
ring = []
for v in cloud:
for edge in g.incident_edges(v, False): # incoming edges to v
u = edge.opposite(v)
du = distance[v] + edge.element()
if du < distance[u]:
distance[u] = du
gps[u] = edge
if u not in cloud:
ring.append(u)

if not ring:
break

for u in ring:
cloud[u] = distance[u]

return cloud, gps

© 2013 Goodrich, Tamassia, Goldwasser

Shortest Path

Given a graph g, a cloud tree as above

we can easily compute a path from source to destination
L/

N

def shortest _path(g, tree, source, destination):
path = []
v = destination
while True:
if not v in tree:

break
e = 'tI“EE[V] P(593,75)
path.append((v,e))

v = e.opposite(v)

3
P(728,127)
P(346 , 14
P(74,182)
/2

return path

P(736,518)

© 2013 Goodrich, Tamassia, Goldwasser

Why Dijkstra’ s Algorithm Works

o Dijkstra’ s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= Suppose it didn’ t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

= When the previous node, D, on the
true shortest path was considered,
its distance was correct

= But the edge (D,F) was relaxed at
that time!

= Thus, so long as d(F)>d(D), F's
distance cannot be wrong. That is,
there is no wrong vertex

N

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 12

Why It Doesn’ t Work for Negative-
Weight Edges

@ Dijkstra’ s algorithm is based on the greedy
method. It adds vertices by increasing distance.

N

= If a node with a negative
incident edge were to be added
late to the cloud, it could mess !
up distances for vertices already
in the cloud. “

C’ s true distance is 1, but
it is already in the cloud
with d(C)=5!

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 13

Bellman-Ford Algorithm

(not in book)

N

Q

© 2013 Goodrich, Tamassia, Goldwasser

Works even with negative-
weight edges

Must assume directed
edges (for otherwise we
would have negative-
weight cycles)

Iteration i finds all shortest
paths that use i edges.
Running time: O(nm).
Can be extended to detect
a negative-weight cycle if it
exists

= How?

Algorithm BellmanFord(G, s)
for all v € G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, «)
fori<1ton-1do
for each e € G.edges()
{ relax edge e }
u <« G.origin(e)
Z < G.opposite(u,e)
r <« getDistance(u) + weight(e)
If r < getDistance(z)
setDistance(z,r)

Shortest Paths

14

BeIIman Ford Example

Nodes are labeled with their d(v) values

f‘\

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 15

DAG-based Algorithm
(not in book)

N

Algorithm DagDistances(G, s)
for all v € G.vertices()
if v=s
setDistance(v, 0)

o Works even with
negative-weight edges

Uses topological order else

Doesn’ t use any fancy setDistance(v, «) _

data structures { Perform a topological sort of the vertices }
a Is much faster than foru<-1tondo {intopological order}

. , : for each e € G.outEdges(u)
Dijkstra’ s algorithm { relax edge e }

o Running time: O(n+m). z < G.opposite(u,e)

r <« getDistance(u) + weight(e)
If r < getDistance(z)
setDistance(z,r)

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 16

DAG Example

Nodes are labeled with their d(v) values

f‘\

1

5
© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths (two steps) 17

