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Weighted Graphs 
 In a weighted graph, each edge has an associated numerical 

value, called the weight of the edge 

 Edge weights may represent, distances, costs, etc. 

 Example: 
 In a  flight route graph, the weight of an edge represents the 

distance in miles between the endpoint airports 

 What is the shortest path from HNL to PVD ? 
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Shortest Paths 
 Given a weighted graph and two vertices u and v, we want to 

find a path of minimum total weight between u and v. 

 Length of a path is the sum of the weights of its edges. 

 Example: 
 Shortest path between Providence and Honolulu 

 Applications 
 Internet packet routing  

 Flight reservations 

 Driving directions 
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Shortest Path Properties 

Property 1: 
 A subpath of a shortest path is itself a shortest path 

Property 2: 
 There is a tree of shortest paths from a start vertex to all the other 

vertices 

Example: 
 Tree of shortest paths from Providence 
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Dijkstra’s Algorithm 

 The distance of a vertex 
v from a vertex s is the 

length of a shortest path 
between s and v 

 Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s 

 Assumptions: 

 the graph is connected 

 the edges are directed 

 the edge weights are 
nonnegative 

 We grow a “cloud” of vertices, 
beginning with s and eventually 

covering all the vertices 

 We store with each vertex v a 
label d(v) representing the 
distance of v from s in the 

subgraph consisting of the cloud 
and its adjacent vertices 

 At each step 

 We add to the cloud the vertex 
u outside the cloud with the 
smallest distance label, d(u) 

 We update the labels of the 
vertices adjacent to u  
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Example 
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Example (cont.) 
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Dijkstra’s Algorithm 
def dijkstra(g, src): 
    cloud = {src: 0}      # cloud of visited vertices/edges and their distance from src 
    gps = {}              # gps dictionary maps a vertex to edge toward source src 
    distance = {}         # distance dictionary: distance[u] = min distance from u to src 
    vertices = set(g.vertices()) 
    vertices.remove(src)  # src is the single element currently in cloud 
    distance[src] = 0     # distance from src to itself is 0 
    for u in vertices:    # distance of any other vertex to source is infinity 
        distance[u] = float('Infinity') 
 
    while True: 
        # Construct the next ring 
        ring = [] 
        for v in cloud: 
            for edge in g.incident_edges(v, False):   # incoming edges to v 
                u = edge.opposite(v) 
                du = distance[v] + edge.element() 
                if du < distance[u]: 
                    distance[u] = du 
                    gps[u] = edge 
                if u not in cloud: 
                    ring.append(u) 
 if not ring: 
            break 
 
        for u in ring: 
            cloud[u] = distance[u] 
 
    return cloud, gps 
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Shortest Path 
# Given a graph g, a cloud tree as above 
# we can easily compute a path from source to destination 
 
def shortest_path(g, tree, source, destination): 
    path = [] 
    v = destination 
    while True: 
        if not v in tree: 
            break 
        e = tree[v] 
        path.append((v,e)) 
        v = e.opposite(v) 
 
    return path 
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Why Dijkstra’s Algorithm Works 
 Dijkstra’s algorithm is based on the greedy 

method. It adds vertices by increasing distance. 
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 Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed. 

 When the previous node, D, on the 
true shortest path was considered, 
its distance was correct 

 But the edge (D,F) was relaxed at 
that time! 

 Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex 
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Why It Doesn’t Work for Negative-
Weight Edges 

 If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud.  
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Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance. 

C’s true distance is 1, but 
it is already in the cloud 
with d(C)=5! 
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Bellman-Ford Algorithm  
(not in book) 

 Works even with negative-
weight edges 

 Must assume directed 
edges (for otherwise we 
would have negative-
weight cycles) 

 Iteration i finds all shortest 
paths that use i edges. 

 Running time: O(nm). 

 Can be extended to detect 
a negative-weight cycle if it 
exists  

 How? 

Algorithm BellmanFord(G, s) 

 for all  v  G.vertices() 

  if  v = s 

   setDistance(v, 0) 

  else  

   setDistance(v, ) 

 for i  1 to n - 1 do 

 for each  e  G.edges() 

  { relax edge e } 

  u  G.origin(e) 

  z  G.opposite(u,e) 

  r  getDistance(u) + weight(e) 

  if  r < getDistance(z) 

   setDistance(z,r) 
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Bellman-Ford Example 
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DAG-based Algorithm  
(not in book) 

 Works even with 
negative-weight edges 

 Uses topological order 

 Doesn’t use any fancy 
data structures 

 Is much faster than 
Dijkstra’s algorithm 

 Running time: O(n+m). 

Algorithm DagDistances(G, s) 

 for all  v  G.vertices() 

  if  v = s 

   setDistance(v, 0) 

  else  

   setDistance(v, ) 

 { Perform a topological sort of the vertices } 

 for u  1 to n do    {in topological order} 

 for each  e  G.outEdges(u) 

  { relax edge e } 

  z  G.opposite(u,e) 

  r  getDistance(u) + weight(e) 

  if  r < getDistance(z) 

   setDistance(z,r) 



© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 17 

 

-2 

DAG Example 
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(two steps) 


