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Weighted Graphs 
 In a weighted graph, each edge has an associated numerical 

value, called the weight of the edge 

 Edge weights may represent, distances, costs, etc. 

 Example: 
 In a  flight route graph, the weight of an edge represents the 

distance in miles between the endpoint airports 

 What is the shortest path from HNL to PVD ? 
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Shortest Paths 
 Given a weighted graph and two vertices u and v, we want to 

find a path of minimum total weight between u and v. 

 Length of a path is the sum of the weights of its edges. 

 Example: 
 Shortest path between Providence and Honolulu 

 Applications 
 Internet packet routing  

 Flight reservations 

 Driving directions 
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Shortest Path Properties 

Property 1: 
 A subpath of a shortest path is itself a shortest path 

Property 2: 
 There is a tree of shortest paths from a start vertex to all the other 

vertices 

Example: 
 Tree of shortest paths from Providence 
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Dijkstra’s Algorithm 

 The distance of a vertex 
v from a vertex s is the 

length of a shortest path 
between s and v 

 Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s 

 Assumptions: 

 the graph is connected 

 the edges are directed 

 the edge weights are 
nonnegative 

 We grow a “cloud” of vertices, 
beginning with s and eventually 

covering all the vertices 

 We store with each vertex v a 
label d(v) representing the 
distance of v from s in the 

subgraph consisting of the cloud 
and its adjacent vertices 

 At each step 

 We add to the cloud the vertex 
u outside the cloud with the 
smallest distance label, d(u) 

 We update the labels of the 
vertices adjacent to u  
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Example 
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Example (cont.) 
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Dijkstra’s Algorithm 
def dijkstra(g, src): 
    cloud = {src: 0}      # cloud of visited vertices/edges and their distance from src 
    gps = {}              # gps dictionary maps a vertex to edge toward source src 
    distance = {}         # distance dictionary: distance[u] = min distance from u to src 
    vertices = set(g.vertices()) 
    vertices.remove(src)  # src is the single element currently in cloud 
    distance[src] = 0     # distance from src to itself is 0 
    for u in vertices:    # distance of any other vertex to source is infinity 
        distance[u] = float('Infinity') 
 
    while True: 
        # Construct the next ring 
        ring = [] 
        for v in cloud: 
            for edge in g.incident_edges(v, False):   # incoming edges to v 
                u = edge.opposite(v) 
                du = distance[v] + edge.element() 
                if du < distance[u]: 
                    distance[u] = du 
                    gps[u] = edge 
                if u not in cloud: 
                    ring.append(u) 
 if not ring: 
            break 
 
        for u in ring: 
            cloud[u] = distance[u] 
 
    return cloud, gps 
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Shortest Path 
# Given a graph g, a cloud tree as above 
# we can easily compute a path from source to destination 
 
def shortest_path(g, tree, source, destination): 
    path = [] 
    v = destination 
    while True: 
        if not v in tree: 
            break 
        e = tree[v] 
        path.append((v,e)) 
        v = e.opposite(v) 
 
    return path 
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Why Dijkstra’s Algorithm Works 
 Dijkstra’s algorithm is based on the greedy 

method. It adds vertices by increasing distance. 
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 Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed. 

 When the previous node, D, on the 
true shortest path was considered, 
its distance was correct 

 But the edge (D,F) was relaxed at 
that time! 

 Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex 
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Why It Doesn’t Work for Negative-
Weight Edges 

 If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud.  
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Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance. 

C’s true distance is 1, but 
it is already in the cloud 
with d(C)=5! 
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Bellman-Ford Algorithm  
(not in book) 

 Works even with negative-
weight edges 

 Must assume directed 
edges (for otherwise we 
would have negative-
weight cycles) 

 Iteration i finds all shortest 
paths that use i edges. 

 Running time: O(nm). 

 Can be extended to detect 
a negative-weight cycle if it 
exists  

 How? 

Algorithm BellmanFord(G, s) 

 for all  v  G.vertices() 

  if  v = s 

   setDistance(v, 0) 

  else  

   setDistance(v, ) 

 for i  1 to n - 1 do 

 for each  e  G.edges() 

  { relax edge e } 

  u  G.origin(e) 

  z  G.opposite(u,e) 

  r  getDistance(u) + weight(e) 

  if  r < getDistance(z) 

   setDistance(z,r) 
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Bellman-Ford Example 
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Nodes are labeled with their d(v) values 
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DAG-based Algorithm  
(not in book) 

 Works even with 
negative-weight edges 

 Uses topological order 

 Doesn’t use any fancy 
data structures 

 Is much faster than 
Dijkstra’s algorithm 

 Running time: O(n+m). 

Algorithm DagDistances(G, s) 

 for all  v  G.vertices() 

  if  v = s 

   setDistance(v, 0) 

  else  

   setDistance(v, ) 

 { Perform a topological sort of the vertices } 

 for u  1 to n do    {in topological order} 

 for each  e  G.outEdges(u) 

  { relax edge e } 

  z  G.opposite(u,e) 

  r  getDistance(u) + weight(e) 

  if  r < getDistance(z) 

   setDistance(z,r) 
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DAG Example 
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Nodes are labeled with their d(v) values 
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