
© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 1

Shortest Paths

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 2

Weighted Graphs
 In a weighted graph, each edge has an associated numerical

value, called the weight of the edge

 Edge weights may represent, distances, costs, etc.

 Example:
 In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

 What is the shortest path from HNL to PVD ?

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 3

Shortest Paths
 Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.

 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing

 Flight reservations

 Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 4

Shortest Path Properties

Property 1:
 A subpath of a shortest path is itself a shortest path

Property 2:
 There is a tree of shortest paths from a start vertex to all the other

vertices

Example:
 Tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 5

Dijkstra’s Algorithm

 The distance of a vertex
v from a vertex s is the

length of a shortest path
between s and v

 Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s

 Assumptions:

 the graph is connected

 the edges are directed

 the edge weights are
nonnegative

 We grow a “cloud” of vertices,
beginning with s and eventually

covering all the vertices

 We store with each vertex v a
label d(v) representing the
distance of v from s in the

subgraph consisting of the cloud
and its adjacent vertices

 At each step

 We add to the cloud the vertex
u outside the cloud with the
smallest distance label, d(u)

 We update the labels of the
vertices adjacent to u

© 2013 Goodrich, Tamassia, Goldwasser

v1

SRC

Cloud Progresssion

v2

v3

v5

v4

v9

v8

v7

v6

© 2013 Goodrich, Tamassia, Goldwasser

SRC

Correctness Proof

v2
v4

v5

v8

v7

v3

v6

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 8

Example

C B

A

E

D

F

0

4 2 8

 

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 8

5 11

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 8

5 8

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 9

Example (cont.)

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

© 2013 Goodrich, Tamassia, Goldwasser

Dijkstra’s Algorithm
def dijkstra(g, src):
 cloud = {src: 0} # cloud of visited vertices/edges and their distance from src
 gps = {} # gps dictionary maps a vertex to edge toward source src
 distance = {} # distance dictionary: distance[u] = min distance from u to src
 vertices = set(g.vertices())
 vertices.remove(src) # src is the single element currently in cloud
 distance[src] = 0 # distance from src to itself is 0
 for u in vertices: # distance of any other vertex to source is infinity
 distance[u] = float('Infinity')

 while True:
 # Construct the next ring
 ring = []
 for v in cloud:
 for edge in g.incident_edges(v, False): # incoming edges to v
 u = edge.opposite(v)
 du = distance[v] + edge.element()
 if du < distance[u]:
 distance[u] = du
 gps[u] = edge
 if u not in cloud:
 ring.append(u)
 if not ring:
 break

 for u in ring:
 cloud[u] = distance[u]

 return cloud, gps

© 2013 Goodrich, Tamassia, Goldwasser

Shortest Path
Given a graph g, a cloud tree as above
we can easily compute a path from source to destination

def shortest_path(g, tree, source, destination):
 path = []
 v = destination
 while True:
 if not v in tree:
 break
 e = tree[v]
 path.append((v,e))
 v = e.opposite(v)

 return path

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 12

Why Dijkstra’s Algorithm Works
 Dijkstra’s algorithm is based on the greedy

method. It adds vertices by increasing distance.

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

 Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

 When the previous node, D, on the
true shortest path was considered,
its distance was correct

 But the edge (D,F) was relaxed at
that time!

 Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 13

Why It Doesn’t Work for Negative-
Weight Edges

 If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

C B

A

E

D

F

0

4 5 7

5 9

4 8

7 1

2 5

6

0 -8

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud
with d(C)=5!

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 14

Bellman-Ford Algorithm
(not in book)

 Works even with negative-
weight edges

 Must assume directed
edges (for otherwise we
would have negative-
weight cycles)

 Iteration i finds all shortest
paths that use i edges.

 Running time: O(nm).

 Can be extended to detect
a negative-weight cycle if it
exists

 How?

Algorithm BellmanFord(G, s)

 for all v  G.vertices()

 if v = s

 setDistance(v, 0)

 else

 setDistance(v, )

 for i  1 to n - 1 do

 for each e  G.edges()

 { relax edge e }

 u  G.origin(e)

 z  G.opposite(u,e)

 r  getDistance(u) + weight(e)

 if r < getDistance(z)

 setDistance(z,r)

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 15



-2

Bellman-Ford Example

 

0







4 8

7 1

-2 5

-2

3 9



0







4 8

7 1

-2 5

3 9

Nodes are labeled with their d(v) values

-2

-2 8

0

4



4 8

7 1

-2 5

3 9



8 -2 4

-1 5

6
1

9

-2 5

0

1

-1

9

4 8

7 1

-2 5

-2

3 9
4

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 16

DAG-based Algorithm
(not in book)

 Works even with
negative-weight edges

 Uses topological order

 Doesn’t use any fancy
data structures

 Is much faster than
Dijkstra’s algorithm

 Running time: O(n+m).

Algorithm DagDistances(G, s)

 for all v  G.vertices()

 if v = s

 setDistance(v, 0)

 else

 setDistance(v, )

 { Perform a topological sort of the vertices }

 for u  1 to n do {in topological order}

 for each e  G.outEdges(u)

 { relax edge e }

 z  G.opposite(u,e)

 r  getDistance(u) + weight(e)

 if r < getDistance(z)

 setDistance(z,r)

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 17



-2

DAG Example

 

0







4 8

7 1

-5 5

-2

3 9



0







4 8

7 1

-5 5

3 9

Nodes are labeled with their d(v) values

-2

-2 8

0

4



4 8

7 1

-5 5

3 9



-2 4

-1

1 7

-2 5

0

1

-1

7

4 8

7 1

-5 5

-2

3 9
4

1

2 4 3

6 5

1

2 4 3

6 5

8

1

2 4 3

6 5

1

2 4 3

6 5

5

0

(two steps)

