Shortest Paths

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports
- What is the shortest path from HNL to PVD ?

Shortest Paths

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence

Dijkstra' s Algorithm

- The distance of a vertex v from a vertex s is the length of a shortest path between s and v
- Dijkstra' s algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
- the graph is connected
- the edges are directed
- the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex \boldsymbol{v} a label $d(v)$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex u outside the cloud with the smallest distance label, $d(\boldsymbol{u})$
- We update the labels of the vertices adjacent to u

Cloud Progresssion

(c) 2013 Goodrich, Tamassia, Goldwasser

Correctness Proof

© 2013 Goodrich, Tamassia, Goldwasser

Example

Example (cont.)

Dijkstra' s Algorithm

```
def dijkstra(g, src):
    cloud = {src: 0} # cloud of visited vertices/edges and their distance from src
    gps = {} # gps dictionary maps a vertex to edge toward source src
    distance = {} # distance dictionary: distance[u] = min distance from u to src
    vertices = set(g.vertices())
    vertices.remove(src) # src is the single element currently in cloud
    distance[src] = 0 # distance from src to itself is 0
    for u in vertices: # distance of any other vertex to source is infinity
    distance[u] = float('Infinity')
    while True:
        # Construct the next ring
        ring = []
        for v in cloud:
            for edge in g.incident_edges(v, False): # incoming edges to v
                u = edge.opposite(v)
                du = distance[v] + edge.element()
                if du < distance[u]:
                                    distance[u] = du
                                    gps[u] = edge
                                    if u not in cloud:
                    ring.append(u)
    if not ring:
            break
        for u}\mathrm{ in ring:
            cloud[u] = distance[u]
    return cloud, gps
```

(c) 2013 Goodrich, Tamassia, Goldwasser

Shortest Path

\# Given a graph g, a cloud tree as above
\# we can easily compute a path from source to destination

© 2013 Goodrich, Tamassia, Goldwasser

Why Dijkstra' s Algorithm Works

- Dijkstra' s algorithm is based on the greedy method. It adds vertices by increasing distance.
- Suppose it didn't find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct
- But the edge (D,F) was relaxed at that time!

- Thus, so long as $d(F) \geq d(D), F^{\prime} s$ distance cannot be wrong. That is, there is no wrong vertex

Why It Doesn' t Work for NegativeWeight Edges

- Dijkstra' s algorithm is based on the greedy method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.

Bellman-Ford Algorithm (not in book)

- Works even with negativeweight edges
- Must assume directed edges (for otherwise we would have negativeweight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: O(nm).
- Can be extended to detect a negative-weight cycle if it exists

```
Algorithm BellmanFord \((G, s)\)
    for all \(v \in\) G.vertices()
        if \(v=s\)
        setDistance(v, 0)
        else
            setDistance \((v, \infty)\)
    for \(i \leftarrow \mathbf{1}\) to \(n-1\) do
    for each \(e \in\) G.edges()
            \(\{\) relax edge \(e\) \}
            \(u \leftarrow \operatorname{G.origin}(e)\)
            \(z \leftarrow\) G.opposite (u,e)
            \(r \leftarrow \operatorname{getDistance}(u)+\) weight \((e)\)
            if \(r<\) getDistance \((z)\)
                setDistance \((z, r)\)
```

- How?

Bellman-Ford Example

Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

DAG-based Algorithm (not in book)

- Works even with negative-weight edges
- Uses topological order
- Doesn' t use any fancy data structures
- Is much faster than Dijkstra' s algorithm
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

```
Algorithm DagDistances \((G, s)\)
    for all \(v \in\) G.vertices()
        if \(v=s\)
        setDistance(v, 0)
        else
            setDistance \((v, \infty)\)
    \{Perform a topological sort of the vertices \}
    for \(u \leftarrow 1\) to \(n\) do \(\quad\{\) in topological order \(\}\)
    for each \(e \in\) G.outEdges(u)
        \(\{\) relax edge \(\boldsymbol{e}\) \}
        \(z \leftarrow\) G.opposite(u,e)
        \(r \leftarrow \operatorname{getDistance}(\boldsymbol{u})+\) weight \((e)\)
        if \(r<\) getDistance \((z)\)
        setDistance \((z, r)\)
```


DAG Example

Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

