
© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 1

Shortest Paths

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 2

Weighted Graphs
 In a weighted graph, each edge has an associated numerical

value, called the weight of the edge

 Edge weights may represent, distances, costs, etc.

 Example:
 In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

 What is the shortest path from HNL to PVD ?

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 3

Shortest Paths
 Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.

 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing

 Flight reservations

 Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 4

Shortest Path Properties

Property 1:
 A subpath of a shortest path is itself a shortest path

Property 2:
 There is a tree of shortest paths from a start vertex to all the other

vertices

Example:
 Tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 5

Dijkstra’s Algorithm

 The distance of a vertex
v from a vertex s is the

length of a shortest path
between s and v

 Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s

 Assumptions:

 the graph is connected

 the edges are directed

 the edge weights are
nonnegative

 We grow a “cloud” of vertices,
beginning with s and eventually

covering all the vertices

 We store with each vertex v a
label d(v) representing the
distance of v from s in the

subgraph consisting of the cloud
and its adjacent vertices

 At each step

 We add to the cloud the vertex
u outside the cloud with the
smallest distance label, d(u)

 We update the labels of the
vertices adjacent to u

© 2013 Goodrich, Tamassia, Goldwasser

v1

SRC

Cloud Progresssion

v2

v3

v5

v4

v9

v8

v7

v6

© 2013 Goodrich, Tamassia, Goldwasser

SRC

Correctness Proof

v2
v4

v5

v8

v7

v3

v6

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 8

Example

C B

A

E

D

F

0

4 2 8

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 8

5 11

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 8

5 8

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 9

Example (cont.)

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

© 2013 Goodrich, Tamassia, Goldwasser

Dijkstra’s Algorithm
def dijkstra(g, src):
 cloud = {src: 0} # cloud of visited vertices/edges and their distance from src
 gps = {} # gps dictionary maps a vertex to edge toward source src
 distance = {} # distance dictionary: distance[u] = min distance from u to src
 vertices = set(g.vertices())
 vertices.remove(src) # src is the single element currently in cloud
 distance[src] = 0 # distance from src to itself is 0
 for u in vertices: # distance of any other vertex to source is infinity
 distance[u] = float('Infinity')

 while True:
 # Construct the next ring
 ring = []
 for v in cloud:
 for edge in g.incident_edges(v, False): # incoming edges to v
 u = edge.opposite(v)
 du = distance[v] + edge.element()
 if du < distance[u]:
 distance[u] = du
 gps[u] = edge
 if u not in cloud:
 ring.append(u)
 if not ring:
 break

 for u in ring:
 cloud[u] = distance[u]

 return cloud, gps

© 2013 Goodrich, Tamassia, Goldwasser

Shortest Path
Given a graph g, a cloud tree as above
we can easily compute a path from source to destination

def shortest_path(g, tree, source, destination):
 path = []
 v = destination
 while True:
 if not v in tree:
 break
 e = tree[v]
 path.append((v,e))
 v = e.opposite(v)

 return path

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 12

Why Dijkstra’s Algorithm Works
 Dijkstra’s algorithm is based on the greedy

method. It adds vertices by increasing distance.

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

 Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

 When the previous node, D, on the
true shortest path was considered,
its distance was correct

 But the edge (D,F) was relaxed at
that time!

 Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 13

Why It Doesn’t Work for Negative-
Weight Edges

 If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

C B

A

E

D

F

0

4 5 7

5 9

4 8

7 1

2 5

6

0 -8

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud
with d(C)=5!

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 14

Bellman-Ford Algorithm
(not in book)

 Works even with negative-
weight edges

 Must assume directed
edges (for otherwise we
would have negative-
weight cycles)

 Iteration i finds all shortest
paths that use i edges.

 Running time: O(nm).

 Can be extended to detect
a negative-weight cycle if it
exists

 How?

Algorithm BellmanFord(G, s)

 for all v G.vertices()

 if v = s

 setDistance(v, 0)

 else

 setDistance(v,)

 for i 1 to n - 1 do

 for each e G.edges()

 { relax edge e }

 u G.origin(e)

 z G.opposite(u,e)

 r getDistance(u) + weight(e)

 if r < getDistance(z)

 setDistance(z,r)

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 15

-2

Bellman-Ford Example

0

4 8

7 1

-2 5

-2

3 9

0

4 8

7 1

-2 5

3 9

Nodes are labeled with their d(v) values

-2

-2 8

0

4

4 8

7 1

-2 5

3 9

8 -2 4

-1 5

6
1

9

-2 5

0

1

-1

9

4 8

7 1

-2 5

-2

3 9
4

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 16

DAG-based Algorithm
(not in book)

 Works even with
negative-weight edges

 Uses topological order

 Doesn’t use any fancy
data structures

 Is much faster than
Dijkstra’s algorithm

 Running time: O(n+m).

Algorithm DagDistances(G, s)

 for all v G.vertices()

 if v = s

 setDistance(v, 0)

 else

 setDistance(v,)

 { Perform a topological sort of the vertices }

 for u 1 to n do {in topological order}

 for each e G.outEdges(u)

 { relax edge e }

 z G.opposite(u,e)

 r getDistance(u) + weight(e)

 if r < getDistance(z)

 setDistance(z,r)

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 17

-2

DAG Example

0

4 8

7 1

-5 5

-2

3 9

0

4 8

7 1

-5 5

3 9

Nodes are labeled with their d(v) values

-2

-2 8

0

4

4 8

7 1

-5 5

3 9

-2 4

-1

1 7

-2 5

0

1

-1

7

4 8

7 1

-5 5

-2

3 9
4

1

2 4 3

6 5

1

2 4 3

6 5

8

1

2 4 3

6 5

1

2 4 3

6 5

5

0

(two steps)

