Directed Graphs

Digraphs

- A digraph is a graph whose edges are all directed
- Short for "directed graph"
- Applications
- one-way streets
- flights
- task scheduling

Digraph Properties

- A graph $G=(V, E)$ such that
- Each edge goes in one direction:

- Edge (a, b) goes from a to b, but not b to a
- If G is simple, $\boldsymbol{m} \leq \boldsymbol{n} \cdot(\boldsymbol{n}-1)$
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size

Digraph Application

- Scheduling: edge (a, b) means task a must be completed before b can be started

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
- discovery edges
- back edges
- forward edges
- cross edges
- A directed DFS starting at a vertex s determines the vertices
 reachable from s

Reachability

- DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

 - Each vertex can reach all other vertices

Strong Connectivity Algorithm

- Pick a vertex vin G
- Perform a DFS from v in G
- If there's a w not visited, print "no"
- Let G^{\prime} be G with edges reversed
- Perform a DFS from v in G^{\prime}
- If there's a w not visited, print "no"
- Else, print "yes"
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in $O(n+m)$ time using DFS, but is more complicated (similar to biconnectivity).

$\{\mathbf{a}, \mathbf{c}, \mathrm{g}\}$
$\{f, \mathbf{d}, \mathrm{e}, \mathrm{b}\}$

Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G^{*} such that
- G^{*} has the same vertices as G
- if G has a directed path from u to $v(u \neq v), G^{*}$ has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

Computing the
 Transitive Closure

- We can perform DFS starting at each vertex
- O(n(n+m))

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Alternatively ... Use

 dynamic programming:The Floyd-Warshall Algorithm

Floyd-Warshall
 Transitive Closure

- Idea \#1: Number the vertices 1, 2, ..., n.
- Idea \#2: Consider paths that use only
 vertices numbered $1,2, \ldots, k$, as intermediate vertices:

Uses only vertices numbered $1, \ldots, k$

Floyd-Warshall’ s Algorithm

- Number vertices v_{1}, \ldots, v_{n}
- Compute digraphs $\boldsymbol{G}_{0}, \ldots, \boldsymbol{G}_{n}$
- $\boldsymbol{G}_{0}=\boldsymbol{G}$
- \boldsymbol{G}_{k} has directed edge $\left(v_{i}, v_{j}\right)$ if \boldsymbol{G} has a directed path from v_{i} to v_{j} with intermediate vertices in
$\left\{v_{1}, \ldots, v_{k}\right\}$
- We have that $\boldsymbol{G}_{\boldsymbol{n}}=\boldsymbol{G}^{*}$
- In phase \boldsymbol{k}, digraph $\boldsymbol{G}_{\boldsymbol{k}}$ is computed from $\boldsymbol{G}_{\boldsymbol{k}-1}$
- Running time: $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$, assuming areAdjacent is $\boldsymbol{O}(1)$ (e.g., adjacency matrix)

```
Algorithm FloydWarshall(G)
    Input digraph \(G\)
    Output transitive closure \(G^{*}\) of \(\boldsymbol{G}\)
    \(i \leftarrow 1\)
    for all \(v \in\) G.vertices()
        denote \(\boldsymbol{v}\) as \(\boldsymbol{v}_{i}\)
        \(i \leftarrow i+1\)
    \(\boldsymbol{G}_{0} \leftarrow G\)
    for \(k \leftarrow 1\) to \(n\) do
        \(\boldsymbol{G}_{k} \leftarrow \boldsymbol{G}_{k-1}\)
        for \(i \leftarrow 1\) to \(n(i \neq k)\) do
            for \(j \leftarrow 1\) to \(n(j \neq i, k)\) do
            if \(G_{k-1}\).areAdjacent \(\left(v_{i}, v_{k}\right) \wedge\)
                \(G_{k-1} \cdot \operatorname{areAdjacent}\left(v_{k}, v_{j}\right)\)
            if \(\neg G_{k}\) areAdjacent \(\left(v_{i}, v_{j}\right)\)
                    \(G_{k}\) insertDirectedEdge \(\left(v_{i}, v_{j}, k\right)\)
    return \(G_{n}\)
```


Python Implementation

```
def floyd_warshall(g):
    """Return a new graph that is the transitive closure of g."""
    closure = deepcopy(g)
    verts = list(closure.vertices())
    n = len(verts)
    for k in range(n):
        for i in range(n):
            # verify that edge (i,k) exists in the partial closure
            if i != k and closure.get_edge(verts[i],verts[k]) is not None:
                for j in range( }n\mathrm{ ):
                    # verify that edge (k,j) exists in the partial closure
            if i!= j!= k and closure.get_edge(verts[k],verts[j]) is not None:
                # if (i,j) not yet included, add it to the closure
                if closure.get_edge(verts[i],verts[j]) is None:
                closure.insert_edge(verts[i],verts[j])
    return closure
```


Floyd-Warshall, Iteration 5

Floyd-Warshall, Iteration 6

Floyd-Warshall, Conclusion

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

$$
v_{1}, \ldots, v_{n}
$$

of the vertices such that for every edge $\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}\right)$, we have $\boldsymbol{i}<\boldsymbol{j}$

- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints
Theorem
A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

- Number vertices, so that (u, v) in E implies $u<v$

Algorithm for Topological Sorting

a Note: This algorithm is different than the one in the book

```
Algorithm TopologicalSort( \(\boldsymbol{G}\) )
    \(\boldsymbol{H} \leftarrow \boldsymbol{G} \quad / /\) Temporary copy of \(\boldsymbol{G}\)
    \(n \leftarrow\) G.numVertices()
    while \(\boldsymbol{H}\) is not empty do
        Let \(\boldsymbol{v}\) be a vertex with no outgoing edges
        Label \(\boldsymbol{v} \leftarrow \boldsymbol{n}\)
        \(\boldsymbol{n} \leftarrow \boldsymbol{n}-\mathbf{1}\)
        Remove \(v\) from \(\boldsymbol{H}\)
```

- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Implementation with DFS

- Simulate the algorithm by using depth-first search
- $O(n+m)$ time.

```
Algorithm topologicalDFS(G)
    Input dag \(G\)
    Output topological ordering of \(\boldsymbol{G}\)
    \(n \leftarrow G\).numVertices()
    for all \(u \in\) G.vertices()
        setLabel(u, UNEXPLORED)
    for all \(v \in\) G.vertices()
    if \(\operatorname{getLabel}(v)=\) UNEXPLORED
        topologicalDFS(G, v)
```

Algorithm topologicalDFS(G, v)
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G}
Output labeling of the vertices of \boldsymbol{G}
in the connected component of v
setLabel(v, VISITED)
for all $e \in$ G.outEdges(v)
\{ outgoing edges \}
$w \leftarrow$ opposite (v,e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED
$\{\boldsymbol{e}$ is a discovery edge \}
topologicalDFS(G, w)
else
\{ \boldsymbol{e} is a forward or cross edge \}
Label \boldsymbol{v} with topological number \boldsymbol{n} $n \leftarrow n-1$

Topological Sorting Example

Directed Graphs

Topological Sorting Example

Directed Graphs

Topological Sorting Example

Directed Graphs

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

