Directed Graphs BOS ORD JFK SFO DFW LAX ML

© 2013 Goodrich, Tamassia, Goldwasser

Directed Graphs

1

Digraphs

- A digraph is a graph whose edges are all directed
 - Short for "directed graph"
- Applications
 - one-way streets
 - flights
 - task scheduling

R

Digraph Properties

 \Box A graph G=(V,E) such that Each edge goes in one direction: Edge (a,b) goes from a to b, but not b to a □ If G is simple, $m < n \cdot (n - 1)$ □ If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size

Digraph Application

Scheduling: edge (a,b) means task a must be completed before b can be started

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex *s* determines the vertices reachable from s

© 2013 Goodrich, Tamassia, Goldwasser

Reachability

DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

Each vertex can reach all other vertices

Strong Connectivity Algorithm

- Pick a vertex v in G
- Perform a DFS from v in G
 - If there's a w not visited, print "no"
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there's a w not visited, print "no"
 - Else, print "yes"
- Running time: O(n+m)

G:

Strongly Connected **Components**

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- \Box Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).

Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G* such that
 - G* has the same vertices as G
 - if G has a directed path from u to $v (u \neq v)$, G* has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

Computing the Transitive Closure

We can perform
 DFS starting at
 each vertex
 O(n(n+m)) ²

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Alternatively ... Use dynamic programming: The Floyd-Warshall Algorithm

© 2013 Goodrich, Tamassia, Goldwasser

Directed Graphs

IWW.GENIUS Com

Floyd-Warshall Transitive Closure

- □ Idea #1: Number the vertices 1, 2, ..., n.
- Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

Uses only vertices numbered 1,...,k (add this edge if it's not already in)

Uses only vertices numbered 1,...,k-1

Floyd-Warshall's Algorithm

Number vertices $v_1, ..., v_n$ Compute digraphs $G_0, ..., G_n$ • $G_0 = G$ • G_k has directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in $\{v_1, ..., v_k\}$ We have that $G_n = G^*$ In phase k_i , digraph G_k is computed from G_{k-1} **u** Running time: $O(n^3)$, assuming areAdjacent is O(1)(e.g., adjacency matrix)

Algorithm *FloydWarshall(G)* **Input** digraph *G* **Output** transitive closure *G*^{*} of *G* $i \leftarrow 1$ for all $v \in G.vertices()$ denote v as v_i $i \leftarrow i + 1$ $G_0 \leftarrow G$ for $k \leftarrow 1$ to n do $G_k \leftarrow G_{k-1}$ for $i \leftarrow 1$ to $n \ (i \neq k)$ do for $j \leftarrow 1$ to $n \ (j \neq i, k)$ do if G_{k-1} .areAdjacent $(v_i, v_k) \land$ G_{k-1} .areAdjacent(v_k, v_j) if $\neg G_k$.areAdjacent(v_i, v_j) G_k .insertDirectedEdge(v_i, v_j, k) return G_n

© 2013 Goodrich, Tamassia, Goldwasser

Python Implementation

```
def floyd_warshall(g):
 1
      """ Return a new graph that is the transitive closure of g."""
 2
      closure = deepcopy(g)
 3
                                                       # imported from copy module
      verts = list(closure.vertices())
                                                       \# make indexable list
 4
      n = len(verts)
 5
      for k in range(n):
 6
 7
        for i in range(n):
           \# verify that edge (i,k) exists in the partial closure
 8
 9
           if i != k and closure.get_edge(verts[i],verts[k]) is not None:
10
             for j in range(n):
11
               \# verify that edge (k,j) exists in the partial closure
               if i != j != k and closure.get_edge(verts[k],verts[j]) is not None:
12
                 \# if (i,j) not yet included, add it to the closure
13
                 if closure.get_edge(verts[i],verts[j]) is None:
14
                    closure.insert_edge(verts[i],verts[j])
15
      return closure
16
```


DAGs and Topological Ordering

© 2013 Goodrich, Tamassia, Goldwasser

Topological Sorting

 \Box Number vertices, so that (u,v) in E implies u < v

Algorithm for Topological Sorting

 Note: This algorithm is different than the one in the book

Algorithm TopologicalSort(G) $H \leftarrow G$ // Temporary copy of G $n \leftarrow G.numVertices()$ while H is not empty doLet v be a vertex with no outgoing edgesLabel $v \leftarrow n$ $n \leftarrow n-1$ Remove v from H

Running time: O(n + m)

© 2013 Goodrich, Tamassia, Goldwasser

Implementation with DFS

- Simulate the algorithm by using depth-first search
- \Box O(n+m) time.

Algorithm *topologicalDFS*(G)

Input dag G Output topological ordering of G $n \leftarrow G.numVertices()$ for all $u \in G.vertices()$ setLabel(u, UNEXPLORED)for all $v \in G.vertices()$ if getLabel(v) = UNEXPLOREDtopologicalDFS(G, v) Algorithm *topologicalDFS*(G, v) **Input** graph *G* and a start vertex *v* of *G* Output labeling of the vertices of G in the connected component of vsetLabel(v, VISITED) for all $e \in G.outEdges(v)$ { outgoing edges } $w \leftarrow opposite(v,e)$ **if** getLabel(w) = UNEXPLORED { *e* is a discovery edge } topologicalDFS(G, w) else { *e* is a forward or cross edge } Label v with topological number n

 $n \leftarrow n - 1$

© 2013 Goodrich, Tamassia, Goldwasser

© 2013 Goodrich, Tamassia, Goldwasser

© 2013 Goodrich, Tamassia, Goldwasser