Directed Graphs

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs

Digraphs

N

a A digraph is a graph
whose edges are all
directed

= Short for “directed graph”
o Applications

= One-way streets

= task scheduling

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 2

Digraph Properties

N

a A graph G=(V,E) such that
s Each edge goes in one direction:
= Edge (a,b) goes from a to b, but not b to a

a If Gis simple, m < n-(n — 1)

a If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of
incoming edges and outgoing edges in time
proportional to their size

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 3

Digraph Application

o Scheduling: edge (a,b) means task a must be
completed before b can be started

N

ics21 ics22 ics23

The good life
4

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs

Directed DFS

o We can specialize the traversal
algorithms (DFS and BFS) to
digraphs by traversing edges
only along their direction

o In the directed DFS algorithm,
we have four types of edges

= discovery edges
= back edges

= forward edges
m Cross edges

o A directed DFS starting at a
vertex s determines the vertices
reachable from s

N

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 5

/Reachability ﬂ

a DFS tree rooted at v: vertices reachable
from v via directed paths

[

N

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs

L =Dl
Strong Connectivity A)

*
*

a Each vertex can reach all other verticés
@{

} / !

/ 4@

e
© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 7

Strong Connectivity
Algorithm

N

o Pick a vertex v in G

a Perform a DFS from v in G
= If there’s a w not visited, print “no”

o Let G’ be G with edges reversed

a Perform a DFS from v in G’
= If there’s a w not visited, print “no”
= Else, print “yes”

a Running time: O(n+m)

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 8

Strongly Connected
/Components

a Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph

a Can also be done in O(n+m) time using DFS, but is
more complicated (similar to biconnectivity).

CED\.@/:@ {a,c,g}
é}{ﬂ\'% {f,d,e,b}

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 9

N

Transitive Closure

a Given a digraph G, the
transitive closure of G is the
digraph G* such that @

s G* has the same vertices
as G

= if G has a directed path
fromutov (u =v), G*
has a directed edge from
utov

o The transitive closure @
provides reachability G
information about a digraph Q
G*

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 10

N

o

—C

d

Computing the
Transitive Closure
5 If there's a way to get

a We can perform from Ato B and from
DFS starting at B to C, then there's a
each vertex way to get from A to C.

= O(n(n+m))

N

Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 11

Floyd-Warshall
Transitive Closure

o Idea #1: Number the vertices 1, 2, ..., n.

o Idea #2: Consider paths that use only
vertices numbered 1, 2, ..., k, as
intermediate vertices:

Uses only vertices numbered 1,...,k
(add this edge if it’ s not already in)

.....
l...
LR |
......
by
1]
N
¥
L
L 4
L 4
L 4
*

N

Uses only vertices

numbered 1,...,k-1 Uses only vertices

numbered 1,..., k-1

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 12

N

o Number vertices v, ..., v,
o Compute digraphs G, ..., G,
] GOZG
= G, has directed edge (v;, v;)
if G has a directed path
from v; to v, with
intermediate vertices in
{Visioviy Wt
o We have that G,= G*
o In phase k, digraph G, is
computed from G, _,
o Running time: O(n3),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

© 2013 Goodrich, Tamassia, Goldwasser

s Algorithm

Floyd-Warshall

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
<1
for all v e G.vertices()
denote v as v;
I« 1+1
Gy« G
fork < 1tondo
G« G, _,4
fori<« 1ton (i #k)do
forj <« 1ton (] #Ii, k)do
if G, _,.areAdjacent(v;, v,) A
G, _;.areAdjacent(vy, v;)
iIf =G,.areAdjacent(v;, v;)
G,.InsertDirectedEdge(v;, v;,
return G,

K)

Directed Graphs

13

N

1
2
3
4
5
6
7
8

9
10

12
13
14
15
16

Python Implementation

def floyd_warshall(g):

""" Return a new graph that is the transitive closure of g."""
closure = deepcopy(g) # imported from copy module
verts = list(closure.vertices()) # make indexable list
n = len(verts)
for k in range(n):
for i in range(n):
verify that edge (i,k) exists in the partial closure
if i != k and closure.get_edge(verts|i],verts[k]) is not None:
for j in range(n):
verify that edge (k,j) exists in the partial closure
if i I=j != k and closure.get_edge(verts[k],verts[j]) is not None:
if (i,j) not yet included, add it to the closure
if closure.get_edge(verts]i],verts[j]) is None:
closure.insert_edge(verts]i],verts|[j])
return closure

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 14

Floyd-Warshall Example a

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 15

QFond-WarshaII, [teration 1

<JFond-WarshaII, [teration 2

<JFIc>yd-WarshaII, Iteration 3 o

QFond-WarshaII, [teration 4 7
7 AREN

o (K

(sr0 /

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 19

Floyd-Warshall, Iteration 6

(sFo
S
@l‘
| v.] 4@/

Floyd-Warshall, Conclusion 7

DAGs and Topological Ordering

o A directed acyclic graph (DAG) is a @ G
digraph that has no directed cycles @

o A topological ordering of a digraph

is @ numbering G
Vis eeey ¥y

N

of the vertices such that for every DAG G
edge (v;, V), we have i <]
o Example: in a task scheduling " Ve

digraph, a topological ordering a
task sequence that satisfies the Vs
precedence constraints

Theorem

A digraph admits a topological
ordering if and only if it is a DAG L

Topological
ordering of G
© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 23

Topological Sorting

a Number vertices, so that (u,v) in E impliesu < v

1 A typical student day
3
2 <>

study computer sci.

N

4 5

;D —Cuorecs)

(play)
rite c.s. program 6

2 C_work out>

bake cookies

10

e L

dream about graphs

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 24

Algorithm for Topological Sorting

a Note: This algorithm is different than the
one in the book

Algorithm TopologicalSort(G)

He«G /[Temporary copy of G

N <« G.num\Vertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v« n
Ne<n-1
Remove v from H

a Running time: O(n + m)

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 25

Implementation with DFS

p
\J
a Simulate the algorithm by Algorithm topologicalDFS(G, v)
using depth-first search Input graph G and a start vertex v of G
a O(n+m) time. Output labeling of the vertices of G
In the connected component of v
setLabel(v, VISITED)
Algorithm topological DFS(G) for all e e G.outEdges(v)
Input dag G { outgoing edges }
Output topological ordering of G W <— opposite(v,e)
n «— G.numVertices() if getLabel(w) = UNEXPLORED
forall u e G.vertices() { e is a discovery edge }
setLabel(u, UNEXPLORED) topologicalDFS(G, w)
forall v e G.vertices() else
If getLabel(v) = UNEXPLORED { e is a forward or cross edge }
topologicalDFS(G, v) Label v with topological number n
Ne<n-1

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs 26

. Topological Sorting Example

0~

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs

27

. Topological Sorting Example

28

. Topological Sorting Example

29

. Topological Sorting Example

30

. Topological Sorting Example

31

. Topological Sorting Example

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs

32

. Topological Sorting Example

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs

33

. Topological Sorting Example

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs

34

. Topological Sorting Example

© 2013 Goodrich, Tamassia, Goldwasser Directed Graphs

35

. Topological Sorting Example

36

