Breadth-First Search

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search

N

N

a Breadth-first search
(BFS) is a general
technique for traversing
a graph

a A BFS traversal of a
graph G

= Visits all the vertices and
edges of G

s Determines whether G is
connected

= Computes the connected

Breadth-First Search

o BFS on a graph with n
vertices and m edges
takes O(n + m) time

o BFS can be further
extended to solve other
graph problems

= Find and report a path
with the minimum
number of edges
between two given

components of G vertices
= Computes a spanning = Find a simple cycle, if
forest of G there is one
© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 2

BFS Algorithm

o The algorithm uses a
mechanism for setting and
getting “labels” of vertices

and edges

N

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u e G.vertices()
setLabel(u, UNEXPLORED)

for all e € G.edges()
setLabel(e, UNEXPLORED)

for all v e G.vertices()
If getLabel(v) = UNEXPLORED

BFS(G, v)

Algorithm BFS(G, s)

L, < new empty sequence
L,.addLast(s)
setLabel(s, VISITED)
I« 0
while —L;.isEmpty()
L; ., < new empty sequence
forall v e L;.elements()
for all e e G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
W < opposite(v,e)
if getLabel(w)=UNEXPLORED
setLabel(e, DISCOVERY)
setLabel(w, VISITED)
L, .,.addLast(w)
else
setLabel(e, CROSS)

l<—1+1

© 2013 Goodrich, Tamassia, Goldwasser

Breadth-First Search

Python Implementation

N

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

def BFS(g, s, discovered):

Perform BFS of the undiscovered portion of Graph g starting at Vertex s.

discovered is a dictionary mapping each vertex to the edge that was used to
discover it during the BFS (s should be mapped to None prior to the call).
Newly discovered vertices will be added to the dictionary as a result.

level = [s] # first level includes only s
while len(level) > 0:
next_level = [] # prepare to gather newly found vertices

for u in level:
for e in g.incident_edges(u): # for every outgoing edge from u
v = e.opposite(u)

if v not in discovered: # v is an unvisited vertex
discovered|[v] = e # e is the tree edge that discovered v
next_level.append(v) # v will be further considered in next pass
level = next_level # relabel 'next’ level to become current

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search

Example

@ unexplored vertex
@ visited vertex
— unexplored edge
—> discovery edge
- = =» cross edge

N

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 5

N

Example (cont.)

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 6

Example (cont.)

I—o:' """""] Lo:'

N

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 7

Properties

.
\J
Notation (A)
G,: connected component of s
Property 1
BFS(G, s) visits all the vertices and
edges of G,
Property 2 E E

The discovery edges labeled by
BFS(G, s) form a spanning tree T,
of G,

Property 3
For each vertex v in L;

m The path of T,fromstovhasi
edges

= Every path from sto vin G, has at
least i edges

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 8

Analysis

o Setting/getting a vertex/edge label takes O(1) time

o Each vertex is labeled twice
s once as UNEXPLORED
s once as VISITED

a Each edge is labeled twice
= once as UNEXPLORED
s once as DISCOVERY or CROSS

a Each vertex is inserted once into a sequence L,

o Method incidentEdges is called once for each vertex

a BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

= Recall that X, deg(v) = 2m

N

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search

Applications

N

a Using the template method pattern, we can
specialize the BFS traversal of a graph G to
solve the following problems in O(n + m) time

= Compute the connected components of G
s Compute a spanning forest of G

= Find a simple cycle in G, or report that G is a
forest

= Given two vertices of G, find a path in G between
them with the minimum number of edges, or
report that no such path exists

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 10

DFS vs. BFS

.
\J

Applications DFS | BFS

Spanning forest, connected J J

components, paths, cycles

Shortest paths |

Biconnected components \

e \ - ™ @ Ll "~V L V-~
N RN D 7=
®
DFS

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 11

DFS vs. BFS (cont.)

.
\J
Back edge (v,w) Cross edge (v,w)
= W iS an ancestor of v in = W is in the same level as
the tree of discovery v or in the next level
edges

DFS

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 12

