
© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 1

Breadth-First Search

C B

A

E

D

L0

L1

F
L2

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 2

Breadth-First Search

 Breadth-first search
(BFS) is a general
technique for traversing
a graph

 A BFS traversal of a
graph G
 Visits all the vertices and

edges of G

 Determines whether G is
connected

 Computes the connected
components of G

 Computes a spanning
forest of G

 BFS on a graph with n
vertices and m edges
takes O(n + m) time

 BFS can be further
extended to solve other
graph problems

 Find and report a path
with the minimum
number of edges
between two given
vertices

 Find a simple cycle, if
there is one

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 3

BFS Algorithm
 The algorithm uses a

mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G, s)

 L0 new empty sequence

L0.addLast(s)

setLabel(s, VISITED)

i 0

while Li.isEmpty()

 Li +1 new empty sequence

 for all v Li.elements()

 for all e G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED

 w opposite(v,e)

 if getLabel(w) = UNEXPLORED

 setLabel(e, DISCOVERY)

 setLabel(w, VISITED)

 Li +1.addLast(w)

 else

 setLabel(e, CROSS)

 i i +1

Algorithm BFS(G)

 Input graph G

 Output labeling of the edges
 and partition of the
 vertices of G

for all u G.vertices()

 setLabel(u, UNEXPLORED)

for all e G.edges()

 setLabel(e, UNEXPLORED)

for all v G.vertices()

 if getLabel(v) = UNEXPLORED

 BFS(G, v)

© 2013 Goodrich, Tamassia, Goldwasser

Python Implementation

Breadth-First Search 4

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 5

Example

C B

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 6

Example (cont.)

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 7

Example (cont.)

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 8

Properties
Notation

Gs: connected component of s

Property 1
 BFS(G, s) visits all the vertices and

edges of Gs

Property 2
 The discovery edges labeled by

BFS(G, s) form a spanning tree Ts
of Gs

Property 3
 For each vertex v in Li

 The path of Ts from s to v has i
edges

 Every path from s to v in Gs has at
least i edges

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 9

Analysis

 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled twice
 once as UNEXPLORED

 once as VISITED

 Each edge is labeled twice
 once as UNEXPLORED

 once as DISCOVERY or CROSS

 Each vertex is inserted once into a sequence Li

 Method incidentEdges is called once for each vertex

 BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

 Recall that Sv deg(v) = 2m

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 10

Applications

 Using the template method pattern, we can
specialize the BFS traversal of a graph G to
solve the following problems in O(n + m) time

 Compute the connected components of G

 Compute a spanning forest of G

 Find a simple cycle in G, or report that G is a

forest

 Given two vertices of G, find a path in G between

them with the minimum number of edges, or
report that no such path exists

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 11

DFS vs. BFS

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

DFS BFS

Applications DFS BFS

Spanning forest, connected
components, paths, cycles

Shortest paths

Biconnected components

© 2013 Goodrich, Tamassia, Goldwasser Breadth-First Search 12

DFS vs. BFS (cont.)

Back edge (v,w)

 w is an ancestor of v in

the tree of discovery
edges

Cross edge (v,w)

 w is in the same level as
v or in the next level

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

DFS BFS

