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Subgraphs

N

a A subgraph S of a graph
G is a graph such that

m The vertices of S are a
subset of the vertices of G

= The edges of S are a
subset of the edges of G
a A spanning subgraph of G
IS a subgraph that
contains all the vertices
of G

Spanning subgraph
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Connectivity

N

a A graph is
connected if there is
a path between
every pair of Connected graph
vertices

a A connected
component of a O—0O)
graph G is a
maximal connected

subgraph of G Non connected graph with two
connected components
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Trees and Forests

a A (free) tree is an
undirected graph T such
that
= T iS connected
= T has no cycles
This definition of tree is
different from the one of
a rooted tree
a A forest is an undirected
graph without cycles O

a The connected
components of a forest
are trees Forest

N

Tree
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Spanning Trees and Forests

N

o A spanning tree of a
connected graph is a
spanning subgraph that is
a tree

o A spanning tree is not

unique unless the graph is
a tree Graph

o Spanning trees have
applications to the design
of communication
networks

o A spanning forest of a
graph is a spanning
subgraph that is a forest

Spanning tree
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Depth-First Search

)
\J
a Depth-first search (DFS) o DFS on a graph with n
IS a general technique vertices and m edges
for traversing a graph takes O(n + m) time
a A DFS traversal of a a DFS can be further
graph G extended to solve other
= Visits all the vertices and graph problems
edges of G = Find and report a path
= Determines whether G is between two given
connected vertices
= Computes the connected = Find a cycle in the graph
components of G - o Depth-first search is to
= Computes a spanning graphs what Euler tour
forest of G

is to binary trees

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 6




N

DFS Algorithm

o The algorithm uses a mechanism
for setting and getting “labels”
of vertices and edges
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Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u e G.vertices()
setLabel(u, UNEXPLORED)
for all e € G.edges()
setLabel(e, UNEXPLORED)
for all v e G.vertices()
If getLabel(v) = UNEXPLORED
DFS(G, v)

Algorithm DFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the edges of G
In the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
W <« opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
DFS(G, w)
else
setLabel(e, BACK)
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Python Implementation

N

def DFS(g, u, discovered):
""" Perform DFS of the undiscovered portion of Graph g starting at Vertex u.

1
2
3
4  discovered is a dictionary mapping each vertex to the edge that was used to
5  discover it during the DFS. (u should be "discovered” prior to the call.)
6
7
8

Newly discovered vertices will be added to the dictionary as a result.

for e in g.incident_edges(u): # for every outgoing edge from u
9 v = e.opposite(u)
10 if v not in discovered: # v is an unvisited vertex
11 discovered|v] = e # e is the tree edge that discovered v
12 DFS(g, v, discovered) # recursively explore from v
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Example

@ unexplored vertex

visited vertex
® ¢ 9 ®

— unexplored edge
—> discovery edge

- — —=» back edge /

N
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'Example (cont.)
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N

similar to a classic

d Maze
» We mark each

intersection, corner

visited

s We mark each corridor

(edge ) traversed

m We keep track of the

path back to the

entrance (start vertex)

by means of a rope
(recursion stack)
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‘ >
and dead end (vertex) '—]

DFS and Maze Traversal

o The DFS algorithm is

strategy for exploring ==

Depth-First Search
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Properties of DFS

N

Property 1
DFS(G, v) visits all the

vertices and edges in
the connected <o
component of v th. TN~
\ ~
Property 2 G : <:>
The discovery edges \ :

labeled by DFS(G, v)
form a spanning tree of
the connected
component of v
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Analysis of DFS

o Setting/getting a vertex/edge label takes O(1) time

o Each vertex is labeled twice
s once as UNEXPLORED
s once as VISITED

a Each edge is labeled twice
= once as UNEXPLORED
= once as DISCOVERY or BACK

o Method incidentEdges is called once for each vertex
a DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

= Recall that X, deg(v) = 2m

N
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i
Path Finding g

a We can specialize the DFS _
algorithm to find a path Algorithm pathDFS(G, v, 2)
between two given setLabel(v, VISITED)
vertices u and z using the S.push(v)
template method pattern if v=2

_ return S.elements()
a We call DFS(G, u) with u for all e e G.incidentEdges(v)
as the start vertex

if getLabel(e) = UNEXPLORED

N

o We use a stack S to keep W < opposite(v,e)
track of the path between if getLabel(w) = UNEXPLORED
the start vertex and the setLabel(e, DISCOVERY)
current vertex S.push(e)
o As soon as destination pathDFS(G, w, 2)
vertex z is encountered, S.pop(e)
we return the path as the else
contents of the stack setLabel(e, BACK)
S.pop(v)

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 14




N
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Cycle Finding

o We can specialize the
DFS algorithm to find a
simple cycle using the
template method pattern

o We use a stack S to
keep track of the path
between the start vertex
and the current vertex

o As soon as a back edge

(v, W) is encountered,
we return the cycle as
the portion of the stack

from the top to vertex w

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
W <« opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop(e)
else
T « new empty stack
repeat
0 < S.pop()
T.push(o)
untilo=w
return T.elements()
S.pop(v)

Depth-First Search




