
© 2013 Goodrich, Tamassia, Goldwasser Graphs 1

Graphs

ORD

DFW

SFO

LAX

© 2013 Goodrich, Tamassia, Goldwasser Graphs 2

Graphs
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices

 E is a collection of pairs of vertices, called edges

 Vertices and edges are positions and store elements

 Example:
 A vertex represents an airport and stores the three-letter airport code

 An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Graphs 3

Edge Types
 Directed edge

 ordered pair of vertices (u,v)

 first vertex u is the origin

 second vertex v is the destination

 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)

 e.g., a flight route

 Directed graph
 all the edges are directed

 e.g., route network

 Undirected graph
 all the edges are undirected

 e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD
849

miles

© 2013 Goodrich, Tamassia, Goldwasser Graphs 4

John

David
Paul

brown.edu

cox.net

cs.brown.edu

att.net

qwest.net

math.brown.edu

cslab1bcslab1a

Applications
 Electronic circuits

 Printed circuit board

 Integrated circuit

 Transportation networks

 Highway network

 Flight network

 Computer networks

 Local area network

 Internet

 Web

 Databases

 Entity-relationship diagram

© 2013 Goodrich, Tamassia, Goldwasser Graphs 5

Terminology
 End vertices (or endpoints) of

an edge
 U and V are the endpoints of a

 Edges incident on a vertex
 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex
 X has degree 5

 Parallel edges
 h and i are parallel edges

 Self-loop
 j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

© 2013 Goodrich, Tamassia, Goldwasser Graphs 6

P1

Terminology (cont.)

 Path
 sequence of alternating

vertices and edges

 begins with a vertex

 ends with a vertex

 each edge is preceded and
followed by its endpoints

 Simple path
 path such that all its vertices

and edges are distinct

 Examples
 P1=(V,b,X,h,Z) is a simple path

 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

© 2013 Goodrich, Tamassia, Goldwasser Graphs 7

Terminology (cont.)
 Cycle

 circular sequence of alternating
vertices and edges

 each edge is preceded and
followed by its endpoints

 Simple cycle

 cycle such that all its vertices
and edges are distinct

 Examples

 C1=(V,b,X,g,Y,f,W,c,U,a,) is a
simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)
is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

© 2013 Goodrich, Tamassia, Goldwasser Graphs 8

Properties
Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1

Sv deg(v) = 2m

Proof: each edge is
counted twice

Property 2
In an undirected graph

with no self-loops and
no multiple edges

m  n (n - 1)/2

Proof: each vertex has
degree at most (n - 1)

What is the bound for a
directed graph?

Example

 n = 4

 m = 6

 deg(v) = 3

© 2013 Goodrich, Tamassia, Goldwasser Graphs 9

Vertices and Edges
 A graph is a collection of vertices and edges.

 We model the abstraction as a combination of three data types:
Vertex, Edge, and Graph.

 A Vertex is a lightweight object that stores an arbitrary
element provided by the user (e.g., an airport code)
 We assume it supports a method, element(), to retrieve the stored

element.

 An Edge stores an associated object (e.g., a flight number,
travel distance, cost), retrieved with the element() method.

 In addition, we assume that an Edge supports the following
methods:

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT

Graphs 10

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Basic Usage

Graphs 11

def basic_graph_example_1():
g = Graph()
v1 = g.insert_vertex(1)
v2 = g.insert_vertex(2)
v3 = g.insert_vertex(3)
v4 = g.insert_vertex(4)
v5 = g.insert_vertex(5)

e1 = g.insert_edge(v1,v4)
e2 = g.insert_edge(v3,v1)
e3 = g.insert_edge(v5,v3)
e4 = g.insert_edge(v2,v5)

print "Vertices:"
for v in g.vertices():

print v.element()

print "Edges:"
for e in g.edges():

a,b = e.endpoints()
print a.element(), b.element()

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Airport Map Example

Graphs 12

loc = {
'BOS': (80,90), # BASCO Airport
'SFO': (150,40), # San Francisco International Airport
'JFK': (300,100), # John F. Kennedy Airport, NY
'MIA': (230,360), # Miami Airport, Florida
'DFW': (400,250), # Dallas/Fort Worth International Airport
'ORD': (160,140), # Chicago O'Hare International Airport
'LAX': (80,290), # Los Angeles International Airport

}

E = (# Airport connections
('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
('JFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
('ORD','MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
('DFW','LAX'), ('MIA','DFW'), ('MIA','LAX'),

)

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Graphical View

Graphs 13

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Code

Graphs 14

def draw_airport_map():
g = Graph(True) # directed graph !
vert = dict() # dictionary from label to vertex object
for a in loc:

vert[a] = g.insert_vertex(a)

for a,b in E:
g.insert_edge(vert[a], vert[b])

for v in g.vertices():
airport = v.element()
p = Point(*loc[airport])
p.draw()
p.text(airport)

for e in g.edges():
a, b = e.endpoints()
x1, y1 = loc[a.element()]
x2, y2 = loc[b.element()]
l = Line.from_coords(x1, y1, x2, y2)
l.draw(fill="red", width=1, arrow="last", arrowshape=[10,14,4])

loc = {
'BOS': (80,90), # BASCO Airport
'SFO': (150,40), # San Francisco International Airport
'JFK': (300,100), # John F. Kennedy Airport, NY
'MIA': (230,360), # Miami Airport, Florida
'DFW': (400,250), # Dallas/Fort Worth International Airport
'ORD': (160,140), # Chicago O'Hare International Airport
'LAX': (80,290), # Los Angeles International Airport

}

E = (# Airport connections
('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
('JFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
('ORD','MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
('DFW','LAX'), ('MIA','DFW'), ('MIA','LAX'),

)

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/GRAPHS/graph_basic_examples.py

© 2013 Goodrich, Tamassia, Goldwasser Graphs 15

Edge List Structure
 Vertex object

 element

 reference to position in
vertex sequence

 Edge object
 element

 origin vertex object

 destination vertex object

 reference to position in
edge sequence

 Vertex sequence
 sequence of vertex

objects

 Edge sequence
 sequence of edge objects

© 2013 Goodrich, Tamassia, Goldwasser Graphs 16

Adjacency List Structure
 Incidence sequence

for each vertex
 sequence of

references to edge
objects of incident
edges

 Augmented edge
objects
 references to

associated
positions in
incidence
sequences of end
vertices

© 2013 Goodrich, Tamassia, Goldwasser Graphs 17

Adjacency Matrix Structure
 Edge list structure

 Augmented vertex
objects
 Integer key (index)

associated with vertex

 2D-array adjacency
array
 Reference to edge

object for adjacent
vertices

 Null for non
nonadjacent vertices

 The “old fashioned”
version just has 0 for
no edge and 1 for edge

© 2013 Goodrich, Tamassia, Goldwasser Graphs 18

Performance
 n vertices, m edges

 no parallel edges

 no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1

© 2013 Goodrich, Tamassia, Goldwasser

Python Graph Implementation
 We use a variant of the adjacency map representation.

 For each vertex v, we use a Python dictionary to
represent the secondary incidence map I(v).

 The list V is replaced by a top-level dictionary D that
maps each vertex v to its incidence map I(v).

 Note that we can iterate through all vertices by generating the
set of keys for dictionary D.

 A vertex does not need to explicitly maintain a reference
to its position in D, because it can be determined in O(1)
expected time.

 Running time bounds for the adjacency-list graph ADT
operations, given above, become expected bounds.

Graphs 19

© 2013 Goodrich, Tamassia, Goldwasser

Vertex Class

Graphs 20

© 2013 Goodrich, Tamassia, Goldwasser

Edge Class

Graphs 21

© 2013 Goodrich, Tamassia, Goldwasser

Graph,
Part 1

Graphs 22

© 2013 Goodrich, Tamassia, Goldwasser

Graph,
end

Graphs 23

