Graphs

AN

© 2013 Goodrich, Tamassia, Goldwasser

Graphs

Graphs

o A graphis a pair (V, E), where
= V is a set of nodes, called vertices
= E is a collection of pairs of vertices, called edges
= Vertices and edges are positions and store elements
o Example:
= A vertex represents an airport and stores the three-letter airport code

= An edge represents a flight route between two airports and stores the
mileage of the route

N

© 2013 Goodrich, Tamassia, Goldwasser Graphs 2

N

Q

Edge Types

Directed edge
= ordered pair of vertices (u,v)
m first vertex u is the origin
= second vertex v is the destination
= e.g., aflight
Undirected edge
= unordered pair of vertices (u,v)
= e.g., a flight route
Directed graph
= all the edges are directed
= e.g., route network
Undirected graph
= all the edges are undirected
= e.g., flight network

© 2013 Goodrich, Tamassia, Goldwasser Graphs

flight
QORD 45 1205~ PVD

849

Applications

o Electronic circuits
s Printed circuit board

N

= Integrated circuit ()

o Transportation networks
= Highway network
= Flight network [Er—

att.net

cS.brown.edu

brown.edu

| 8] rossems] (351
gwest.net

a Computer networks
= Local area network
s Internet
= Web
a Databases
= Entity-relationship diagram

© 2013 Goodrich, Tamassia, Goldwasser Graphs 4

Terminology

o End vertices (or endpoints) of
an edge

= U and V are the endpoints of a
o Edges incident on a vertex

= 3, d, and b are incident on V
o Adjacent vertices

= UandV are adjacent
o Degree of a vertex

= X has degree 5
o Parallel edges

= hand i are parallel edges
o Self-loop

= jis a self-loop

N

© 2013 Goodrich, Tamassia, Goldwasser Graphs 5

Terminology (cont.)

o Path

= Sequence of alternating
vertices and edges

= begins with a vertex
= ends with a vertex

= each edge is preceded and
followed by its endpoints

o Simple path

= path such that all its vertices
and edges are distinct

o Examples
= P,=(V,b,X,h,Z) is a simple path

- P2=(UICIWIeIXIgIYIfIWIdIV) iS d
path that is not simple

N

© 2013 Goodrich, Tamassia, Goldwasser Graphs 6

Terminology (cont.)

o Cycle

m Circular sequence of alternating
vertices and edges

= each edge is preceded and
followed by its endpoints
o Simple cycle
= cycle such that all its vertices
and edges are distinct
o Examples
= C=(V,bXagq,)Y,fW,.cU,a,d.)isa
simple cycle
= C=(U,cWeXqgY, fw,dV,a,dJ)
is a cycle that is not simple

N

© 2013 Goodrich, Tamassia, Goldwasser Graphs 7

Properties

Property 1

2., deg(v) = 2m

Proof: each edge is
counted twice

Property 2
In an undirected graph

with no self-loops and
no multiple edges

m<n(n-1)/2

Proof: each vertex has
degree at most (n—1)

What is the bound for a
directed graph?

N

© 2013 Goodrich, Tamassia, Goldwasser

Notation
n number of vertices
m number of edges
deg(v) degree of vertex v

Example
m N=4
mM=6

Graphs

m deg(v) =3

N

Vertices and Edges

Q

Q

A graph is a collection of vertices and edges.

We model the abstraction as a combination of three data types:
Vertex, Edge, and Graph.

A Vertex is a lightweight object that stores an arbitrary
element provided by the user (e.g., an airport code)
= We assume it supports a method, element(), to retrieve the stored
element.
An Edge stores an associated object (e.g., a flight number,
travel distance, cost), retrieved with the element() method.

In addition, we assume that an Edge supports the following
methods:

endpoints(): Return a tuple (u,v) such that vertex u is the origin of
the edge and vertex v is the destination; for an undirected
graph, the orientation is arbitrary.

opposite(v): Assuming vertex v is one endpoint of the edge (either
origin or destination), return the other endpoint.

© 2013 Goodrich, Tamassia, Goldwasser Graphs 9

Graph ADT

incident_edges(v, out=True):

insert_vertex(x=None):

insert_edge(u, v, x=None):

remove_vertex(v):

remove_edge(e):

© 2013 Goodrich, Tamassia, Goldwasser

4 vertexco-unt():
vertices():
edge_count():
edges():
get_edge(u,v):

degree(v, out=True):

Return the number of vertices of the graph.
Return an iteration of all the vertices of the graph.
Return the number of edges of the graph.

Return an iteration of all the edges of the graph.

Return the edge from vertex u to vertex v, if one exists;
otherwise return None. For an undirected graph, there is
no difference between get_edge(u,v) and get_edge(v,u).
For an undirected graph, return the number of edges inci-
dent to vertex v. For a directed graph, return the number
of outgoing (resp. incoming) edges incident to vertex v,
as designated by the optional parameter.

Return an iteration of all edges incident to vertex v. In
the case of a directed graph, report outgoing edges by
default; report incoming edges if the optional parameter
is set to False.

Create and return a new Vertex storing element x.

Create and return a new Edge from vertex u to vertex v,
storing element x (None by default).

Remove vertex v and all its incident edges from the graph.
Remove edge e from the graph.

Graphs 10

Graph ADT: Basic Usage

N

© 2013 Goodrich, Tamassia, Goldwasser

def basic_graph_example_1():

g = Graph()
vl = g.insert_vertex(1)

v2 = g.insert_vertex(2)
v3 = g.insert_vertex(3)
v4 = g.insert_vertex(4)
v5 = g.insert_vertex(5)
el = g.insert_edge(vl,v4)
e2 = g.insert_edge(v3,vl)
e3 = g.insert_edge(v5,v3)
e4 = g.insert_edge(v2,v5)

print "Vertices:"
for v in g.vertices():
print v.element()

print "Edges:"
for e in g.edges():
a,b = e.endpoints()
print a.element(), b.element()

Graphs

11

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py

Graph ADT: Airport Map Example

N

loc = {
'BOS': (80,90),
'SFO': (150,40),
'IJFK': (300,100),
'MIA': (230,360),
'DFW': (400,250),
'ORD': (160,140),
'LAX': (80,290),

BASCO Airport

San Francisco International Airport
John F. Kennedy Airport, NY

Miami Airport, Florida

Dallas/Fort Worth International Airport
Chicago O'Hare International Airport
Los Angeles International Airport

H H HEHHHH

E = (# Airport connections
('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
("IFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
('ORD', 'MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
(- DFWS 5 SLAX" Y5 (P MIA ", “DEW)5 ¢ "MIA L5 LAX™),

© 2013 Goodrich, Tamassia, Goldwasser Graphs 12

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py

Graph ADT: Graphical View

N

L

SFO

© 2013 Goodrich, Tamassia, Goldwasser

Graphs

13

Graph ADT: Code

N

L

def draw_airport_map():
g = Graph(True) # directed graph !

for a in loc:

vert = dict() # dictionary from label to vertex object

vert[a] = g.insert_vertex(a) Toc - ¢
for a,b in E:
g.insert_edge(vert[a], vert[b])
for v in g.vertices(): }
irport = v.element() E = (
= Point(*loc[airport])
.draw()
t

'BOS':
'SFO':
'JFK':
'MIA':
'DFW":
'ORD':
'LAX":

Airport connections

('BOS','SFO'), ('BOS',"’
("IFK','DFW"), ('JFK',"'
('ORD', 'MIA'), ('LAX',"'
('DFW', 'LAX"), ('MIA',’

(80,90),
(150,40),
(300,100),
(230,360),
(400,250),
(160,140),
(80,290),

BASCO Airport

San Francisco International Airport

John F. Kennedy Airport, NY

Miami Airport, Florida

Dallas/Fort Worth International Airport
Chicago O'Hare International Airport

Los Angeles International Airport

JFK'), ('BOS','MIA'), ('JFK','BOS'),
MIA'), ('JFK','SFO'), ('ORD','DFW'),
ORD'), ('DFW','SFO'), ('DFW','ORD'),
DFW'), ('MIA','LAX'),

for e in g.edges():
a, b = e.endpoints()
x1, yl = loc[a.element()]
x2, y2 = loc[b.element()]
1 = Line.from_coords(x1, yl, x2, y2)

l.draw(fill="red", width=1, arrow="last", arrowshape=[10,14,4])

© 2013 Goodrich, Tamassia, Goldwasser Graphs

14

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/GRAPHS/graph_basic_examples.py

Edge List Structure

o Vertex object
= element

= reference to position in
vertex sequence

o Edge object
= element
= Origin vertex object
= destination vertex object

= reference to position in
edge sequence

o Vertex sequence

= Sequence of vertex
objects

o Edge sequence
= Sequence of edge objects

N

© 2013 Goodrich, Tamassia, Goldwasser Graphs

A

A

A

A

15

Adjacency List Structure

o Incidence sequence
for each vertex
= Sequence of
references to edge
objects of incident 4 7 W @
edges
o Augmented edge
objects
= references to

associated
positions in

incidence NI

sequences of end
vertices

N

e

© 2013 Goodrich, Tamassia, Goldwasser Graphs

16

N

Edge list structure

o Augmented vertex

objects
= Integer key (index)
associated with vertex
2D-array adjacency
array

= Reference to edge
object for adjacent
vertices

= Null for non
nonadjacent vertices
The “old fashioned”
version just has 0 for
no edge and 1 for edge

© 2013 Goodrich, Tamassia, Goldwasser

N T <

Graphs

Adjacency Matrix Structure

8
W—
01 2
0) el g
1 |e f
2 18|t
3 h

17

Performance

N

L

© 2013 Goodrich, Tamassia, Goldwasser

opulad e || A0 e el
= no self-loops

Space n+m n+m n?
incidentEdges(v) m deg(v) n
areAdjacent (v, w) m | min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n?
insertEdge(v, w, 0) 1 1 1
removeVertex(v) m deg(v) n?
removeEdge(e) 1 1 1

Graphs

18

Python Graph Implementation

a We use a variant of the adjacency map representation.

a For each vertex v, we use a Python dictionary to
represent the secondary incidence map A v).

a The list Vis replaced by a top-level dictionary D that
maps each vertex vto its incidence map A v).

= Note that we can iterate through all vertices by generating the
set of keys for dictionary D.

o A vertex does not need to explicitly maintain a reference
to its position in D, because it can be determined in O(1)
expected time.

a Running time bounds for the adjacency-list graph ADT
operations, given above, become expected bounds.

© 2013 Goodrich, Tamassia, Goldwasser Graphs 19

N

Vertex Class

p
\J
1 # nested Vertex class -
2 class Vertex:
3 """ Lightweight vertex structure for a graph.”""
4 __slots__ = '_element'
5
6 def __init__(self, x):
7 """ Do not call constructor directly. Use Graph's insert_vertex(x)."""
8 self. _element = x
9
10 def element(self):
11 """ Return element associated with this vertex.”""
12 return self._element
13
14 def __hash__(self): # will allow vertex to be a map/set key
15 return hash(id(self))

© 2013 Goodrich, Tamassia, Goldwasser Graphs 20

Edge Class

18 class Edge:

nested Edge class

C/ 19 """ Lightweight edge structure for a graph.”"”
20 __Slots__ = '_origin', '_destination', '_element'
21
22 def __init__(self, u, v, x):
23 """ Do not call constructor directly. Use Graph's insert_edge(u,v,x).”""
24 self. _origin = u
25 self. _destination = v
26 self. _element = x
27
28 def endpoints(self):
29 """ Return (u,v) tuple for vertices u and v.""”
30 return (self._origin, self._destination)
31
32 def opposite(self, v):
33 """ Return the vertex that is opposite v on this edge.”""
34 return self._destination if v is self._origin else self._origin
35
36 def element(self):
37 """ Return element associated with this edge.””"
38 return self._element
39
40 def __hash__(self): # will allow edge to be a map/set key
41 return hash((self._origin, self._destination))

© 2013 Goodrich, Tamassia, Goldwasser Graphs 21

Graph,
Part 1

oo~ N R W N

N

27
28
29
30
31
32
33
34
35
36
37
38
39

class Graph:
""" Representation of a simple graph using an adjacency map."""

def __init__(self, directed=False):
""" Create an empty graph (undirected, by default).

Graph is directed if optional paramter is set to True.

non

self._outgoing = { }
only create second map for directed graph; use alias for undirected
self._incoming = { } if directed else self._outgoing

def is_directed(self):
""" Return True if this is a directed graph; False if undirected.

Property is based on the original declaration of the graph, not its contents.

non

return self. incoming is not self. outgoing # directed if maps are distinct

def vertex_count(self):
""" Return the number of vertices in the graph.
return len(self._outgoing)

LIEIRT)

def vertices(self):
""" Return an iteration of all vertices of the graph.
return self._outgoing.keys()

o

def edge_count(self):
""" Return the number of edges in the graph.”""
total = sum(len(self._outgoing|v]) for v in self._outgoing)
for undirected graphs, make sure not to double-count edges
return total if self.is_directed() else total // 2

def edges(self):
""" Return a set of all edges of the graph.”"”
result = set() # avoid double-reporting edges of undirected graph
for secondary_map in self. _outgoing.values():
result.update(secondary_map.values()) # add edges to resulting set
return result

© 2013 Goodrich, Tamassia, Goldwasser Graphs

22

N

Graph,
end

def get_edge(self, u, v):
""" Return the edge from u to v, or None if not adjacent.”"”
return self. outgoing[u].get(v) # returns None if v not adjacent

def degree(self, v, outgoing=True):
""" Return number of (outgoing) edges incident to vertex v in the graph.

If graph is directed, optional parameter used to count incoming edges.
adj = self._outgoing if outgoing else self._incoming
return len(adj[v])

def incident_edges(self, v, outgoing=True):
""" Return all (outgoing) edges incident to vertex v in the graph.

If graph is directed, optional parameter used to request incoming edges.
adj = self._outgoing if outgoing else self._incoming
for edge in adj[v].values():

yield edge

def insert_vertex(self, x=None):
"""Insert and return a new Vertex with element x.”""
v = self.Vertex(x)
self._outgoing[v] = { }
if self.is_directed():
self. _incoming[v] = { } # need distinct map for incoming edges
return v

def insert_edge(self, u, v, x=None):
"""Insert and return a new Edge from u to v with auxiliary element x.
e = self.Edge(u, v, x)
self. _outgoing[u][v] = e
self._incoming[v][u] = e

© 2013 Goodrich, Tamassia, Goldwasser Graphs

23

