
© 2013 Goodrich, Tamassia, Goldwasser Graphs 1

Graphs

ORD

DFW

SFO

LAX

© 2013 Goodrich, Tamassia, Goldwasser Graphs 2

Graphs
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices

 E is a collection of pairs of vertices, called edges

 Vertices and edges are positions and store elements

 Example:
 A vertex represents an airport and stores the three-letter airport code

 An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Graphs 3

Edge Types
 Directed edge

 ordered pair of vertices (u,v)

 first vertex u is the origin

 second vertex v is the destination

 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)

 e.g., a flight route

 Directed graph
 all the edges are directed

 e.g., route network

 Undirected graph
 all the edges are undirected

 e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD
849

miles

© 2013 Goodrich, Tamassia, Goldwasser Graphs 4

John

David
Paul

brown.edu

cox.net

cs.brown.edu

att.net

qwest.net

math.brown.edu

cslab1bcslab1a

Applications
 Electronic circuits

 Printed circuit board

 Integrated circuit

 Transportation networks

 Highway network

 Flight network

 Computer networks

 Local area network

 Internet

 Web

 Databases

 Entity-relationship diagram

© 2013 Goodrich, Tamassia, Goldwasser Graphs 5

Terminology
 End vertices (or endpoints) of

an edge
 U and V are the endpoints of a

 Edges incident on a vertex
 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex
 X has degree 5

 Parallel edges
 h and i are parallel edges

 Self-loop
 j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

© 2013 Goodrich, Tamassia, Goldwasser Graphs 6

P1

Terminology (cont.)

 Path
 sequence of alternating

vertices and edges

 begins with a vertex

 ends with a vertex

 each edge is preceded and
followed by its endpoints

 Simple path
 path such that all its vertices

and edges are distinct

 Examples
 P1=(V,b,X,h,Z) is a simple path

 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

© 2013 Goodrich, Tamassia, Goldwasser Graphs 7

Terminology (cont.)
 Cycle

 circular sequence of alternating
vertices and edges

 each edge is preceded and
followed by its endpoints

 Simple cycle

 cycle such that all its vertices
and edges are distinct

 Examples

 C1=(V,b,X,g,Y,f,W,c,U,a,) is a
simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)
is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

© 2013 Goodrich, Tamassia, Goldwasser Graphs 8

Properties
Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1

Sv deg(v) = 2m

Proof: each edge is
counted twice

Property 2
In an undirected graph

with no self-loops and
no multiple edges

m n (n - 1)/2

Proof: each vertex has
degree at most (n - 1)

What is the bound for a
directed graph?

Example

 n = 4

 m = 6

 deg(v) = 3

© 2013 Goodrich, Tamassia, Goldwasser Graphs 9

Vertices and Edges
 A graph is a collection of vertices and edges.

 We model the abstraction as a combination of three data types:
Vertex, Edge, and Graph.

 A Vertex is a lightweight object that stores an arbitrary
element provided by the user (e.g., an airport code)
 We assume it supports a method, element(), to retrieve the stored

element.

 An Edge stores an associated object (e.g., a flight number,
travel distance, cost), retrieved with the element() method.

 In addition, we assume that an Edge supports the following
methods:

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT

Graphs 10

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Basic Usage

Graphs 11

def basic_graph_example_1():
g = Graph()
v1 = g.insert_vertex(1)
v2 = g.insert_vertex(2)
v3 = g.insert_vertex(3)
v4 = g.insert_vertex(4)
v5 = g.insert_vertex(5)

e1 = g.insert_edge(v1,v4)
e2 = g.insert_edge(v3,v1)
e3 = g.insert_edge(v5,v3)
e4 = g.insert_edge(v2,v5)

print "Vertices:"
for v in g.vertices():

print v.element()

print "Edges:"
for e in g.edges():

a,b = e.endpoints()
print a.element(), b.element()

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Airport Map Example

Graphs 12

loc = {
'BOS': (80,90), # BASCO Airport
'SFO': (150,40), # San Francisco International Airport
'JFK': (300,100), # John F. Kennedy Airport, NY
'MIA': (230,360), # Miami Airport, Florida
'DFW': (400,250), # Dallas/Fort Worth International Airport
'ORD': (160,140), # Chicago O'Hare International Airport
'LAX': (80,290), # Los Angeles International Airport

}

E = (# Airport connections
('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
('JFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
('ORD','MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
('DFW','LAX'), ('MIA','DFW'), ('MIA','LAX'),

)

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Graphical View

Graphs 13

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Code

Graphs 14

def draw_airport_map():
g = Graph(True) # directed graph !
vert = dict() # dictionary from label to vertex object
for a in loc:

vert[a] = g.insert_vertex(a)

for a,b in E:
g.insert_edge(vert[a], vert[b])

for v in g.vertices():
airport = v.element()
p = Point(*loc[airport])
p.draw()
p.text(airport)

for e in g.edges():
a, b = e.endpoints()
x1, y1 = loc[a.element()]
x2, y2 = loc[b.element()]
l = Line.from_coords(x1, y1, x2, y2)
l.draw(fill="red", width=1, arrow="last", arrowshape=[10,14,4])

loc = {
'BOS': (80,90), # BASCO Airport
'SFO': (150,40), # San Francisco International Airport
'JFK': (300,100), # John F. Kennedy Airport, NY
'MIA': (230,360), # Miami Airport, Florida
'DFW': (400,250), # Dallas/Fort Worth International Airport
'ORD': (160,140), # Chicago O'Hare International Airport
'LAX': (80,290), # Los Angeles International Airport

}

E = (# Airport connections
('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
('JFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
('ORD','MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
('DFW','LAX'), ('MIA','DFW'), ('MIA','LAX'),

)

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/GRAPHS/graph_basic_examples.py

© 2013 Goodrich, Tamassia, Goldwasser Graphs 15

Edge List Structure
 Vertex object

 element

 reference to position in
vertex sequence

 Edge object
 element

 origin vertex object

 destination vertex object

 reference to position in
edge sequence

 Vertex sequence
 sequence of vertex

objects

 Edge sequence
 sequence of edge objects

© 2013 Goodrich, Tamassia, Goldwasser Graphs 16

Adjacency List Structure
 Incidence sequence

for each vertex
 sequence of

references to edge
objects of incident
edges

 Augmented edge
objects
 references to

associated
positions in
incidence
sequences of end
vertices

© 2013 Goodrich, Tamassia, Goldwasser Graphs 17

Adjacency Matrix Structure
 Edge list structure

 Augmented vertex
objects
 Integer key (index)

associated with vertex

 2D-array adjacency
array
 Reference to edge

object for adjacent
vertices

 Null for non
nonadjacent vertices

 The “old fashioned”
version just has 0 for
no edge and 1 for edge

© 2013 Goodrich, Tamassia, Goldwasser Graphs 18

Performance
 n vertices, m edges

 no parallel edges

 no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1

© 2013 Goodrich, Tamassia, Goldwasser

Python Graph Implementation
 We use a variant of the adjacency map representation.

 For each vertex v, we use a Python dictionary to
represent the secondary incidence map I(v).

 The list V is replaced by a top-level dictionary D that
maps each vertex v to its incidence map I(v).

 Note that we can iterate through all vertices by generating the
set of keys for dictionary D.

 A vertex does not need to explicitly maintain a reference
to its position in D, because it can be determined in O(1)
expected time.

 Running time bounds for the adjacency-list graph ADT
operations, given above, become expected bounds.

Graphs 19

© 2013 Goodrich, Tamassia, Goldwasser

Vertex Class

Graphs 20

© 2013 Goodrich, Tamassia, Goldwasser

Edge Class

Graphs 21

© 2013 Goodrich, Tamassia, Goldwasser

Graph,
Part 1

Graphs 22

© 2013 Goodrich, Tamassia, Goldwasser

Graph,
end

Graphs 23

