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Graphs
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices

 E is a collection of pairs of vertices, called edges

 Vertices and edges are positions and store elements

 Example:
 A vertex represents an airport and stores the three-letter airport code

 An edge represents a flight route between two airports and stores the 
mileage of the route
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Edge Types
 Directed edge

 ordered pair of vertices (u,v)

 first vertex u is the origin

 second vertex v is the destination

 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)

 e.g., a flight route

 Directed graph
 all the edges are directed

 e.g., route network

 Undirected graph
 all the edges are undirected

 e.g., flight network
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Applications
 Electronic circuits

 Printed circuit board

 Integrated circuit

 Transportation networks

 Highway network

 Flight network

 Computer networks

 Local area network

 Internet

 Web

 Databases

 Entity-relationship diagram
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Terminology
 End vertices (or endpoints) of 

an edge
 U and V are the endpoints of a

 Edges incident on a vertex
 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex
 X has degree 5 

 Parallel edges
 h and i are parallel edges

 Self-loop
 j is a self-loop
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P1

Terminology (cont.)

 Path
 sequence of alternating 

vertices and edges 

 begins with a vertex

 ends with a vertex

 each edge is preceded and 
followed by its endpoints

 Simple path
 path such that all its vertices 

and edges are distinct

 Examples
 P1=(V,b,X,h,Z) is a simple path

 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 
path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2



© 2013 Goodrich, Tamassia, Goldwasser Graphs 7

Terminology (cont.)
 Cycle

 circular sequence of alternating 
vertices and edges 

 each edge is preceded and 
followed by its endpoints

 Simple cycle

 cycle such that all its vertices 
and edges are distinct

 Examples

 C1=(V,b,X,g,Y,f,W,c,U,a,) is a 
simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)
is a cycle that is not simple
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Properties
Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1

Sv deg(v) = 2m

Proof: each edge is 
counted twice

Property 2
In an undirected graph 

with no self-loops and 
no multiple edges

m  n (n - 1)/2

Proof: each vertex has 
degree at most (n - 1)

What is the bound for a 
directed graph?

Example

 n = 4

 m = 6

 deg(v) = 3
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Vertices and Edges
 A graph is a collection of vertices and edges. 

 We model the abstraction as a combination of three data types: 
Vertex, Edge, and Graph. 

 A Vertex is a lightweight object that stores an arbitrary 
element provided by the user (e.g., an airport code)
 We assume it supports a method, element(), to retrieve the stored 

element. 

 An Edge stores an associated object (e.g., a flight number, 
travel distance, cost), retrieved with the element( ) method. 

 In addition, we assume that an Edge supports the following 
methods: 
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Graph ADT
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Graph ADT: Basic Usage
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def basic_graph_example_1():
g = Graph()
v1 = g.insert_vertex(1)
v2 = g.insert_vertex(2)
v3 = g.insert_vertex(3)
v4 = g.insert_vertex(4)
v5 = g.insert_vertex(5)

e1 = g.insert_edge(v1,v4)
e2 = g.insert_edge(v3,v1)
e3 = g.insert_edge(v5,v3)
e4 = g.insert_edge(v2,v5)

print "Vertices:"
for v in g.vertices():

print v.element()

print "Edges:"
for e in g.edges():

a,b = e.endpoints()
print a.element(), b.element()

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py
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Graph ADT: Airport Map Example
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loc = {
'BOS':  (80,90),       # BASCO Airport
'SFO':  (150,40),      # San Francisco International Airport
'JFK':  (300,100),     # John F. Kennedy Airport, NY
'MIA':  (230,360),     # Miami Airport, Florida
'DFW':  (400,250),     # Dallas/Fort Worth International Airport
'ORD':  (160,140),     # Chicago O'Hare International Airport
'LAX':  (80,290),      # Los Angeles International Airport

}

E = (   # Airport connections
('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
('JFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
('ORD','MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
('DFW','LAX'), ('MIA','DFW'), ('MIA','LAX'),

)

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py
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Graph ADT: Graphical View
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Graph ADT: Code
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def draw_airport_map():
g = Graph(True)  # directed graph !
vert = dict()    # dictionary from label to vertex object
for a in loc:

vert[a] = g.insert_vertex(a)

for a,b in E:
g.insert_edge(vert[a], vert[b])

for v in g.vertices():
airport = v.element()
p = Point(*loc[airport])
p.draw()
p.text(airport)

for e in g.edges():
a, b = e.endpoints()
x1, y1 = loc[a.element()]
x2, y2 = loc[b.element()]
l = Line.from_coords(x1, y1, x2, y2)
l.draw(fill="red", width=1, arrow="last", arrowshape=[10,14,4])

loc = {
'BOS':  (80,90),       # BASCO Airport
'SFO':  (150,40),      # San Francisco International Airport
'JFK':  (300,100),     # John F. Kennedy Airport, NY
'MIA':  (230,360),     # Miami Airport, Florida
'DFW':  (400,250),     # Dallas/Fort Worth International Airport
'ORD':  (160,140),     # Chicago O'Hare International Airport
'LAX':  (80,290),      # Los Angeles International Airport

}

E = (   # Airport connections
('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
('JFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
('ORD','MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
('DFW','LAX'), ('MIA','DFW'), ('MIA','LAX'),

)

https://samyzaf.com/braude/DSAL/CODE/GRAPHS/graph_basic_examples.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/GRAPHS/graph_basic_examples.py
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Edge List Structure
 Vertex object

 element

 reference to position in 
vertex sequence

 Edge object
 element

 origin vertex object

 destination vertex object

 reference to position in 
edge sequence

 Vertex sequence
 sequence of vertex 

objects

 Edge sequence
 sequence of edge objects
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Adjacency List Structure
 Incidence sequence 

for each vertex
 sequence of 

references to edge 
objects of incident 
edges

 Augmented edge 
objects
 references to 

associated 
positions in 
incidence 
sequences of end 
vertices
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Adjacency Matrix Structure
 Edge list structure

 Augmented vertex 
objects
 Integer key (index) 

associated with vertex

 2D-array adjacency 
array
 Reference to edge 

object for adjacent 
vertices

 Null for non 
nonadjacent vertices

 The “old fashioned”
version just has 0 for 
no edge and 1 for edge
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Performance
 n vertices, m edges

 no parallel edges

 no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1
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Python Graph Implementation
 We use a variant of the adjacency map representation. 

 For each vertex v, we use a Python dictionary to 
represent the secondary incidence map I(v). 

 The list V is replaced by a top-level dictionary D that 
maps each vertex v to its incidence map I(v).

 Note that we can iterate through all vertices by generating the 
set of keys for dictionary D. 

 A vertex does not need to explicitly maintain a reference 
to its position in D, because it can be determined in O(1) 
expected time. 

 Running time bounds for the adjacency-list graph ADT 
operations, given above, become expected bounds. 
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Vertex Class
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Edge Class
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Graph, 
Part 1
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Graph, 
end
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