Graphs

Graphs

- A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where
- V is a set of nodes, called vertices
- E is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements
- Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
- ordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
- first vertex u is the origin
- second vertex v is the destination
- e.g., a flight
- Undirected edge
- unordered pair of vertices (u,v)
- e.g., a flight route

- Directed graph
- all the edges are directed
- e.g., route network
- Undirected graph
- all the edges are undirected
- e.g., flight network

Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases
- Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5
- Parallel edges
- h and i are parallel edges
- Self-loop

- j is a self-loop

Terminology (cont.)

- Path
- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
- path such that all its vertices and edges are distinct
- Examples
- $P_{1}=(V, b, X, h, Z)$ is a simple path
- $P_{2}=(U, C, W, e, X, g, Y, f, W, d, V)$ is a
 path that is not simple

Terminology (cont.)

- Cycle
- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
- cycle such that all its vertices and edges are distinct
- Examples
- $C_{1}=(V, b, X, g, Y, f, W, c, U, a, \cdot J)$ is a simple cycle
- $\left.C_{2}=(U, c, W, e, X, g, Y, f, W, d, V, a\lrcorner,\right)$ is a cycle that is not simple

Properties

Property 1
$\Sigma_{v} \operatorname{deg}(v)=2 m$
Proof: each edge is counted twice
Property 2
In an undirected graph with no self-loops and no multiple edges

$$
\boldsymbol{m} \leq \boldsymbol{n}(\boldsymbol{n}-1) / 2
$$

Proof: each vertex has degree at most $(\boldsymbol{n}-1)$

What is the bound for a directed graph?

Notation

$n \quad$ number of vertices
$m \quad$ number of edges $\operatorname{deg}(\boldsymbol{v})$ degree of vertex \boldsymbol{v}

Example

- $n=4$
- $m=6$
- $\operatorname{deg}(\boldsymbol{v})=3$

Vertices and Edges

- A graph is a collection of vertices and edges.
- We model the abstraction as a combination of three data types: Vertex, Edge, and Graph.
- A Vertex is a lightweight object that stores an arbitrary element provided by the user (e.g., an airport code)
- We assume it supports a method, element(), to retrieve the stored element.
- An Edge stores an associated object (e.g., a flight number, travel distance, cost), retrieved with the element() method.
- In addition, we assume that an Edge supports the following methods:

> endpoints(): Return a tuple (u, v) such that vertex u is the origin of the edge and vertex v is the destination; for an undirected graph, the orientation is arbitrary.

Graph ADT

vertex_count(): Return the number of vertices of the graph.
vertices(): Return an iteration of all the vertices of the graph.
edge_count(): Return the number of edges of the graph.
edges(): Return an iteration of all the edges of the graph.
get_edge($u, v)$: Return the edge from vertex u to vertex v, if one exists; otherwise return None. For an undirected graph, there is no difference between get_edge (u, v) and get_edge (v, u).
degree(v, out=True): For an undirected graph, return the number of edges incident to vertex v. For a directed graph, return the number of outgoing (resp. incoming) edges incident to vertex v, as designated by the optional parameter.
incident_edges(v , out=True): Return an iteration of all edges incident to vertex v. In the case of a directed graph, report outgoing edges by default; report incoming edges if the optional parameter is set to False.
insert_vertex($\mathrm{x}=$ None): Create and return a new Vertex storing element x.
insert_edge($u, v, x=$ None): Create and return a new Edge from vertex u to vertex v, storing element x (None by default).
remove_vertex(v): Remove vertex v and all its incident edges from the graph. remove_edge(e): Remove edge e from the graph.

Graph ADT: Basic Usage

```
def basic_graph_example_1():
    g = Graph()
    v1 = g.insert_vertex(1)
    v2 = g.insert_vertex(2)
    v3 = g.insert_vertex(3)
    v4 = g.insert_vertex(4)
    v5 = g.insert_vertex(5)
    e1 = g.insert_edge(v1,v4)
    e2 = g.insert_edge(v3,v1)
    e3 = g.insert_edge(v5,v3)
    e4 = g.insert_edge(v2,v5)
    print "Vertices:"
    for v in g.vertices():
        print v.element()
    print "Edges:"
    for e in g.edges():
        a,b = e.endpoints()
        print a.element(), b.element()
```


Graph ADT: Airport Map Example

```
loc = {
    'BOS': (80,90), # BASCO Airport
    'SFO': (150,40), # San Francisco International Airport
    'JFK': (300,100), # John F. Kennedy Airport, NY
    'MIA': (230,360), # Miami Airport, Florida
    'DFW': (400,250), # Dallas/Fort Worth International Airport
    'ORD': (160,140), # Chicago O'Hare International Airport
    'LAX': (80,290), # Los Angeles International Airport
    }
E = ( # Airport connections
    ('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
    ('JFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
    ('ORD','MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
    ('DFW','LAX'), ('MIA','DFW'), ('MIA','LAX'),
    )
```


Graph ADT: Graphical View

Graph ADT: Code

```
def draw_airport_map():
    g = Graph(True) # directed graph !
    vert = dict() # dictionary from label to vertex object
    for a in loc:
        vert[a] = g.insert_vertex(a)
    for a,b in E:
        g.insert_edge(vert[a], vert[b])
    for v in g.vertices():
        airport = v.element()
        p = Point(*loc[airport])
        p.draw()
        p.text(airport)
    for e in g.edges():
        a, b = e.endpoints()
        x1, y1 = loc[a.element()]
        x2, y2 = loc[b.element()]
        l = Line.from_coords(x1, y1, x2, y2)
        l.draw(fill="red", width=1, arrow="last", arrowshape=[10,14,4])

\section*{Edge List Structure}
- Vertex object
- element
- reference to position in vertex sequence
- Edge object

- element
- origin vertex object
- destination vertex object
- reference to position in edge sequence
- Vertex sequence
- sequence of vertex objects
- Edge sequence
- sequence of edge objects


\section*{Adjacency List Structure}
- Incidence sequence for each vertex
- sequence of references to edge objects of incident edges

- Augmented edge objects
- references to associated positions in incidence sequences of end vertices

\section*{Adjacency Matrix Structure}
- Edge list structure
- Augmented vertex objects
- Integer key (index) associated with vertex
- 2D-array adjacency array
- Reference to edge object for adjacent vertices
- Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge


\section*{Performance}
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l} 
- \(\boldsymbol{n}\) vertices, \(\boldsymbol{m}\) edges \\
- no parallel edges \\
- no self-loops
\end{tabular} & \begin{tabular}{c} 
Edge \\
List
\end{tabular} & \begin{tabular}{c} 
Adjacency \\
List
\end{tabular} & \begin{tabular}{c} 
Adjacency \\
Matrix
\end{tabular} \\
\hline Space & \(\boldsymbol{n + \boldsymbol { m }}\) & \(\boldsymbol{n}+\boldsymbol{m}\) & \(\boldsymbol{n}^{2}\) \\
\hline incidentEdges \((\boldsymbol{v})\) & \(\boldsymbol{m}\) & \(\operatorname{deg}(\boldsymbol{v})\) & \(\boldsymbol{n}\) \\
\hline areAdjacent \((\boldsymbol{v}, \boldsymbol{w})\) & \(\boldsymbol{m}\) & \(\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))\) & 1 \\
\hline insertVertex \((\boldsymbol{o})\) & 1 & 1 & \(\boldsymbol{n}^{2}\) \\
\hline insertEdge \((\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})\) & 1 & 1 & 1 \\
\hline removeVertex \((\boldsymbol{v})\) & \(\boldsymbol{m}\) & \(\operatorname{deg}(\boldsymbol{v})\) & \(\boldsymbol{n}^{2}\) \\
\hline removeEdge \((\boldsymbol{e})\) & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Python Graph Implementation}
- We use a variant of the adjacency map representation.
- For each vertex \(v\), we use a Python dictionary to represent the secondary incidence map \(I(V)\).
- The list \(V\) is replaced by a top-level dictionary \(D\) that maps each vertex \(v\) to its incidence map \(\Pi(v)\).
- Note that we can iterate through all vertices by generating the set of keys for dictionary \(D\).
- A vertex does not need to explicitly maintain a reference to its position in \(D\), because it can be determined in \(O(1)\) expected time.
- Running time bounds for the adjacency-list graph ADT operations, given above, become expected bounds.

\section*{Vertex Class}
```

\#--------------------------- nested Vertex class
class Vertex:
"""Lightweight vertex structure for a graph."""
__slots__ = '_element'
def __init__(self, x):
"""DDo not call constructor directly. Use Graph's insert_vertex(x)."""
self._element = x
10 def element(self):
14 def __hash__(self): \# will allow vertex to be a map/set key
"""Return element associated with this vertex."""
return self._element
return hash(id(self))

```
9
11
12
13
15

\section*{Edge Class}
```

1 7
\#---------------------------- nested Edge class
class Edge:
"""Lightweight edge structure for a graph."""
__slots_- = '_origin', '_destination', '_element'
def __init __(self, u,v,x):
"""Do not call constructor directly. Use Graph's insert_edge(u,v,x)."""
self._origin = u
self._destination = v
self._element = x
def endpoints(self):
"""Return (u,v) tuple for vertices u and v."""
return (self._origin, self._destination)
def opposite(self, v):
"""Return the vertex that is opposite v on this edge."""
return self._destination if v is self._origin else self._origin
def element(self):
"""Return element associated with this edge."""
return self._element
def __ hash__(self): \# will allow edge to be a map/set key
return hash((self._origin, self._destination))

```
Graph,Part 1
class Graph:
"""Representation of a simple graph using an adjacency map."""
def __init__(self, directed=False):
    """ Create an empty graph (undirected, by default).
    Graph is directed if optional paramter is set to True.
    ","
    self._outgoing \(=\{ \}\)
    \# only create second map for directed graph; use alias for undirected
    self._incoming \(=\{ \}\) if directed else self._outgoing
    def is_directed(self):
    """ Return True if this is a directed graph; False if undirected.
    Property is based on the original declaration of the graph, not its contents.
    return self._incoming is not self._outgoing \# directed if maps are distinct
    def vertex_count(self):
        """Return the number of vertices in the graph."""
        return len(self._outgoing)
    def vertices(self):
        """Return an iteration of all vertices of the graph."""
        return self._outgoing.keys()
    def edge_count(self):
        """Return the number of edges in the graph."""
        total \(=\) sum(len(self._outgoing[v]) for \(v\) in self._outgoing)
        \# for undirected graphs, make sure not to double-count edges
        return total if self.is_directed( ) else total // 2
    def edges(self):
        """Return a set of all edges of the graph."""
        result \(=\boldsymbol{\operatorname { s e t }}() \quad\) \# avoid double-reporting edges of undirected graph
        for secondary_map in self._outgoing.values( ):
            result.update(secondary_map.values()) \# add edges to resulting set
    return result
Graph, ..... 40 ..... 41
43
```end444546474849505152535455565758
def get_edge(self, \(u, v\)):
"""Return the edge from \(u\) to \(v\), or None if not adjacent."""
return self._outgoing[u].get(v) \# returns None if v not adjacent
def degree(self, \(\mathbf{v}\), outgoing=True):
"""Return number of (outgoing) edges incident to vertex \(v\) in the graph.
If graph is directed, optional parameter used to count incoming edges.
"""
adj \(=\) self._outgoing if outgoing else self._incoming return len(adj[v])
def incident_edges(self, v, outgoing=True):
"" "Return all (outgoing) edges incident to vertex v in the graph.
If graph is directed, optional parameter used to request incoming edges.
"""
adj \(=\) self._outgoing if outgoing else self._incoming
for edge in adj[v].values():
yield edge
def insert_vertex(self, \(x=\) None):
"""Insert and return a new Vertex with element x."""
v=self.Vertex(x)
self._outgoing[v] \(=\{ \}\)
if self.is_directed():
self._incoming \([\mathrm{v}]=\{ \} \quad\) \# need distinct map for incoming edges
return v
def insert_edge(self, \(u, v, x=\) None):
"""Insert and return a new Edge from \(u\) to \(v\) with auxiliary element \(x\)." ""
\(e=\) self.Edge(\(u, v, x)\)
self._outgoing \([u][v]=e\)
self._incoming \([v][u]=e\)```

