
Part 4: Trees

http://upload.wikimedia.org/wikipedia/commons/b/ba/Shaki_khan_palace_interier.jpg
http://upload.wikimedia.org/wikipedia/commons/b/ba/Shaki_khan_palace_interier.jpg

Trees

© 2013 Goodrich, Tamassia, Goldwasser 2Trees

Make Money Fast!

Stock
Fraud

Ponzi
Scheme

Bank
Robbery

Example: Family Tree

© 2013 Goodrich, Tamassia, Goldwasser 3Trees

Example: Unix File System

© 2013 Goodrich, Tamassia, Goldwasser 4Trees

What is a Tree

 In computer science, a
tree is an abstract model
of a hierarchical
structure

 A tree consists of nodes
with a parent-child
relation

 Applications:

 Organization charts

 File systems

 Programming
environments

© 2013 Goodrich, Tamassia, Goldwasser Trees 5

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

What is a Tree (Daniel Geva)

© 2013 Goodrich, Tamassia, Goldwasser Trees 6

n2 left subtree

n1

n2 n3

n4 n5 n6

n8 n9 n10

Root

Right son of n3

Left son of n3

Parent of n6 and n7

Leaf (all green

nodes)

A node(all circles)

Edge

Node height – number of edges on the longest path to a leaf

Tree height – height of the root

Balanced Tree – All non- leaf have two sons

n11

n7

Tree Terminology
 Root

node without parent (A)

 Internal node
node with at least one child (A, B, C, F)

 Leaf (External node)
node without children (E, I, J, K, G, H, D)

 Ancestors of a node:
parent, grandparent, grand-grandparent,
etc.

 Depth of a node:
number of ancestors

 Height of a node:
1 + Max height of children
(leaf height = 0)

 Height of a tree
maximum depth of any node (3)

 Descendant of a node
child, grandchild, grand-grandchild, etc.

© 2013 Goodrich, Tamassia, Goldwasser Trees 7

subtree

A

B DC

G HE F

I J K

 Subtree: tree consisting of
a node and its
descendants

Tree ADT

 We use positions to abstract
nodes, left key is return type:

 Generic methods:

 Integer len()

 Boolean is_empty()

 Iterator positions()

 Iterator iter()

 Accessor methods:

 position root()

 position parent(p)

 Iterator children(p)

 Integer num_children(p)

Note: A tree position is like a list index

© 2013 Goodrich, Tamassia, Goldwasser Trees 8

Query methods:

 Boolean is_leaf(p)

 Boolean is_root(p)

Update method:

 element replace (p, o)

Additional update methods
may be defined by data
structures implementing the
Tree ADT

Abstract Tree Class in Python

© 2013 Goodrich, Tamassia, Goldwasser Trees 9

Preorder Traversal
 A traversal visits the nodes of a

tree in a systematic manner

 In a preorder traversal, a node is
visited before its descendants

 Application: print a structured
document

© 2013 Goodrich, Tamassia, Goldwasser Trees 10

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preOrder(v)

visit(v)

for each child w of v

preOrder (w)

Postorder Traversal
 In a postorder traversal, a

node is visited after its
descendants

 Application: compute space
used by files in a directory and
its subdirectories

© 2013 Goodrich, Tamassia, Goldwasser Trees 11

Algorithm postOrder(v)

for each child w of v

postOrder (w)

visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

Binary Trees
 A binary tree is a tree with the

following properties:

 Each internal node has at most two
children (exactly two for proper
binary trees)

 The children of a node are an
ordered pair

 We call the children of an internal
node left child and right child

 Proper Binary Tree: every node is a
leaf or must have exactly two
children

© 2013 Goodrich, Tamassia, Goldwasser Trees 12

 Applications:
 arithmetic expressions

 decision processes

 searching

A

B C

F GD E

H ILINK TO PYTHON CODE

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/binary_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py

Arithmetic Expression Tree

 Binary tree associated with an arithmetic expression

 internal nodes: operators

 external nodes: operands

 Example: arithmetic expression tree for the
expression (2  (a - 1) + (3  b))

© 2013 Goodrich, Tamassia, Goldwasser Trees 13

+



-2

a 1

3 b

LINK TO PYTHON CODE

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py

Decision Tree

 Binary tree associated with a decision process

 internal nodes: questions with yes/no answer

 external nodes: decisions

 Example: dining decision

© 2013 Goodrich, Tamassia, Goldwasser Trees 14

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

Properties of Proper Binary Trees

 Notation

n number of nodes

e number of

external nodes

i number of internal

nodes

h height

© 2013 Goodrich, Tamassia, Goldwasser Trees 15

Properties:

 e = i + 1

 n = 2e - 1

 h  i

 h  (n - 1)/2

 e  2h

 h  log2 e

 h  log2 (n + 1) - 1

BinaryTree ADT

 The BinaryTree ADT
extends the Tree
ADT, i.e., it inherits
all the methods of
the Tree ADT

 Additional methods:

 position left(p)

 position right(p)

 position sibling(p)

 Update methods
may be defined by
data structures
implementing the
BinaryTree ADT

© 2013 Goodrich, Tamassia, Goldwasser Trees 16

LINK TO PYTHON CODE

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/binary_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/binary_tree.py

Inorder Traversal
 In an inorder traversal a

node is visited after its left
subtree and before its right
subtree

 Application: draw a binary
tree
 x(v) = inorder rank of v

 y(v) = depth of v

© 2013 Goodrich, Tamassia, Goldwasser Trees 17

Algorithm inOrder(v)

if v has a left child

inOrder (left (v))

visit(v)

if v has a right child

inOrder (right (v))

3

1

2

5

6

7 9

8

4

Print Arithmetic Expressions
 Specialization of an inorder

traversal
 print operand or operator

when visiting node

 print “(“ before traversing left
subtree

 print “)“ after traversing right
subtree

© 2013 Goodrich, Tamassia, Goldwasser Trees 18

Algorithm printExpression(v)

if v has a left child
print(“(’’)

inOrder (left(v))

print(v.element ())

if v has a right child

inOrder (right(v))

print (“)’’)

+



-2

a 1

3 b
((2  (a - 1)) + (3  b))

LINK TO PYTHON CODE

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py

Evaluate Arithmetic Expressions
 Specialization of a postorder

traversal

 recursive method returning
the value of a subtree

 when visiting an internal
node, combine the values
of the subtrees

© 2013 Goodrich, Tamassia, Goldwasser Trees 19

Algorithm evalExpr(v)

if is_leaf (v)

return v.element ()

else

x  evalExpr(left (v))

y  evalExpr(right (v))

  operator stored at v

return x  y+



-2

5 1

3 2

LINK TO PYTHON CODE

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py

Euler Tour Traversal
 Generic traversal of a binary tree

 Includes a special cases the preorder, postorder and inorder traversals

 Walk around the tree and visit each node three times:

 on the left (preorder)

 from below (inorder)

 on the right (postorder)

© 2013 Goodrich, Tamassia, Goldwasser Trees 20

+



-2

5 1

3 2

L

B

R

Linked Structure for Trees
 A node is represented by

an object storing
 Element

 Parent node

 Sequence of children
nodes

 Node objects implement
the Position ADT

© 2013 Goodrich, Tamassia, Goldwasser Trees 21



B

DA

C E

F

B

 

A D F



C



E

The Node Class

© 2013 Goodrich, Tamassia, Goldwasser Trees 22

class Node:
"Class for storing a binary tree node"

def __init__(self, element, parent=None, left=None, right=None):
self.element = element
self.parent = parent
self.left = left
self.right = right

https://samyzaf.com/braude/DSAL/LAB/gcd1.py

Linked Structure for Binary Trees
 A node is represented

by an object storing

 Element

 Parent node

 Left child node

 Right child node

 Node objects implement
the Position ADT

© 2013 Goodrich, Tamassia, Goldwasser Trees 23

B

DA

C E

 

   

B

A D

C E



Array-Based Representation of
Binary Trees

 Nodes are stored in an array A

© 2013 Goodrich, Tamassia, Goldwasser Trees 24

 Node v is stored at A[rank(v)]

 rank(root) = 1

 if node is the left child of parent(node),
rank(node) = 2  rank(parent(node))

 if node is the right child of parent(node),
rank(node) = 2 rank(parent(node)) + 1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

A B D G H ……

1 2 3 10 110

Example: Directory Disk Space

© 2013 Goodrich, Tamassia, Goldwasser Trees 25

Example: Directory Disk Space

© 2013 Goodrich, Tamassia, Goldwasser Trees 26

import os

def disk_space(dir):
size = 0
for file in os.listdir(dir) :

path = dir + "/" + file
if os.path.isfile(path):

size += os.path.getsize(path)
else:

size += disk_space(path)
return size

https://samyzaf.com/braude/DSAL/CODE/linked_binary_tree.py

