
1Data Structures and Algorithms 31632

SEARCHING

AND

SORTING

Part 3

2Data Structures and Algorithms 31632

 Searching is the process of finding particular information

from a collection of data based on specific criteria

 Search operations can be performed on every collection

data structure (string, array, list, stack, dictionary, set, …)

 Search operation accepts two inputs:

 Collection (or sequence) object

 Search key

 Search key can have several forms

 An item that we want to find in a list

 Part of an item to search

 Multiple parts for searching matching items (Google search)

3Data Structures and Algorithms 31632

 There are four different types of search operations

 In or out: Checking if the collection contains or does not

contain the item

Example: item in L

 First match: Finding the first occurrence of the key and

reporting its location in the collection

Example: List.index(item)

 All matches: Finding all the items in the collection that

match the key

Example: fnmatch.filter(Names, “Dan*”)

 Partial matches: Find the first n items that match the key

4Data Structures and Algorithms 31632

Linear Search (return first match)

def linear_search(List, item):
n = len(List)
for i in range(n):

if item == List[i]:
return i

return -1

 Linear search is already implemented by the list index method except

that when the item is not in the list you get an error

 The run time order of the linear search algorithm is O(n)

 Question: suppose that our sequence is sorted, could this help to speed

the search process?

https://samyzaf.com/braude/DSAL/CODE/linear_search.py

5Data Structures and Algorithms 31632

Binary Search

L = [0, 1, 3, 4, 5, 7, 8, 9, 11, 14, 16, 18, 19]
L is a sorted list in increasing order!
binary_search(L, 7)
low = 0, high = len(L) = 12
mid = (low+high) / 2 = 6

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

midlow high

midlow high

midlow

low=mid =high

high

© 2013 Goodrich, Tamassia, Goldwasser

https://samyzaf.com/braude/DSAL/CODE/linear_search.py

6Data Structures and Algorithms 31632

Binary Search Algorithm (Recursive)

def binary_search_rec(List, item, low=0, high=None):
if high is None:

high = len(List)

if low >= high: # empty list
return -1

mid = (low + high) / 2
mid_value = List[mid]
if item < mid_value:

return binary_search_rec(List, item, low, mid)
elif item > mid_value:

return binary_search_rec(List, item, mid+1, high)
else:

return mid

https://samyzaf.com/braude/DSAL/CODE/binary_search.py

7Data Structures and Algorithms 31632

Binary Search Algorithm

def binary_search(List, item, low=0, high=None):
if high is None:

high = len(List)

while low < high:
mid = (low + high) / 2
mid_value = List[mid]
if mid_value < item:

low = mid+1
elif mid_value > item:

high = mid
else:

return mid
return -1

https://samyzaf.com/braude/DSAL/CODE/binary_search.py

8Data Structures and Algorithms 31632

 Although binary search run time is fast O(log n), it depends

on sorting the sequence !!!

 Questions:

 What is the cost of sorting a sequence container?

 What sorting algorithms do we have?

 And which are the best sorting algorithms?

 In the next slides we will explore several (out of many)

sorting algorithms and check their run time and quality

9Data Structures and Algorithms 31632

 Sorting is among the most important, and well studied

computational problems

 Data sets are often stored in sorted order, for example, to

allow for efficient searches with the binary search algorithm

 Many advanced algorithms rely on sorting as a subroutine

10Data Structures and Algorithms 31632

 YouTube Bubble Sort Dance

 The simplest and most intuitive sorting algorithm

L is a list of integers that we want to sort

def bubble_sort(L):
N = len(L)
while True:

sorted = True
for i in range(0,N-1):

if L[i+1] < L[i]:
sorted = False
L[i], L[i+1] = L[i+1], L[i]

if sorted:
return

http://www.youtube.com/watch?v=lyZQPjUT5B4

11Data Structures and Algorithms 31632

 Here is a different version of Bubble Sort:

L is a list of integers

def bubble_sort2(L):
N = len(L)
for i in range(0,N-1):

for j in range(i+1, N):
if L[j] < L[i]:

L[i], L[j] = L[j], L[i]

12Data Structures and Algorithms 31632

def bubble_sort_test():
for i in range(24):

L = range(0,10)
random.shuffle(L)
print "L = ", L
bubble_sort(L)
print "Bubble sort:", L
assert L == range(0,10)
raw_input("Press any key to continue:")

https://samyzaf.com/braude/DSAL/CODE/bubble_sort.py

13Data Structures and Algorithms 31632

Bubble Sort Run Time Data

List Size Run Time (seconds)
100 0.0017

200 0.007

300 0.0157

400 0.0278

500 0.0429

600 0.0611

700 0.0824

800 0.1071

900 0.1355

1000 0.1663

1100 0.2003

1200 0.2387

1300 0.2789

1400 0.3238

1500 0.3723

1600 0.4252

1700 0.4737

1800 0.5308

1900 0.5964

2000 0.6538

2100 0.7279

2200 0.7914

2300 0.8676

2400 0.9406

2500 1.0191

2600 1.1171

2700 1.1941

2800 1.2853

2900 1.3791

Run time results obtained by running

Python 2.7.5 on a core-i7 ASUS laptop

O(𝒏𝟐)

Time(n) ≈ 0.000000166*𝒏𝟐

14Data Structures and Algorithms 31632

 Another name for O(𝒏𝟐) is “Quadratic Time Complexity” which is

considered industry-bad unless the input size is expected to be small in

almost all practical cases

 The above 30 experiments allows us to predict what will happen if our

list size grows

 Lists of size 10M are not very rare. For example, chip floor-plan models

may contain more than 1 billion transistors - 6 months run time for a

10M size list is of course unacceptable

List Size Run Time (seconds)
10000 16.6 seconds

100000 1660 seconds

1000000 166000 seconds

10M 16600000 seconds ~ 6 months

Time(n) ≈ 0.000000166*𝒏𝟐

15Data Structures and Algorithms 31632

 Python code for the Bubble sort algorithm and the tests code can be

downloaded from:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py

 Here is a typical routine for calculating average run time by generating many

random shuffles of a list

import random

def bubble_sort_average_time(list_size, num_tests):
times = list()
L = range(0, list_size)

for i in range(num_tests):
random.shuffle(L)
t0 = time.time()
bubble_sort(L)
t1 = time.time()
t = t1-t0
times.append(t)

return sum(times)/num_tests

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
https://samyzaf.com/braude/DSAL/CODE/bubble_sort.py

16Data Structures and Algorithms 31632

 Code for computing average time is also in:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py

 We expect the student to copy paste and apply it to other algorithms!

Create num_tests lists of size list_size and compute
average time for doing bubble_sort on these lists

def bubble_sort_average_time(list_size, num_tests):
times = list()
L = range(0, list_size)

for i in range(num_tests):
random.shuffle(L)
t0 = time.time()
bubble_sort(L)
t1 = time.time()
t = t1-t0
times.append(t)

return sum(times)/num_tests

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
https://samyzaf.com/braude/DSAL/CODE/bubble_sort.py

17Data Structures and Algorithms 31632

 Code for drawing average time graphs is also in:
https://samyzaf.com/braude/DSAL/CODE/bubble_sort.py

 We expect the student to apply it to other algorithms!

def bubble_sort_runtime_graph():
import matplotlib.pyplot as pyplot
Size = [100*i for i in range(1,30)]
Time = list()
for N in Size:

print "N=", N
t = bubble_sort_average_time(N,16)
t = round(t,4)
Time.append(t)

pyplot.plot(Size,Time)
pyplot.xlabel('List Size')
pyplot.ylabel('Run Time')
pyplot.show()
header = ('List Size', 'Run Time (seconds)')

https://samyzaf.com/braude/DSAL/CODE/bubble_sort.py
https://samyzaf.com/braude/DSAL/CODE/bubble_sort.py

18Data Structures and Algorithms 31632

 Could there be a special list on which Bubble sort runs

forever ?

 The general halting problem: given an algorithm and an

input, can we determine whether the algorithm will

eventually halt or will run forever?

 Being able to prove that a given algorithm will halt for all its

possible inputs is a critical !

 Proving that an algorithm must halt for all its inputs is

usually very hard, and in many cases impossible.

 It may involve very complicated mathematical proofs and/or

very long and expensive computations (e.g., QA, verification

of an VLSI unit)

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Halting_problem

19Data Structures and Algorithms 31632

 We’ll prove that for the second version

 Idea: prove an invariant is true for all iterations

 It holds initially

 If it holds at stage i, then it holds for stage i+1

 Eventually must hold for all the list

 For bubble sort 2, the invariant is:

at iteration i, the sub-list L[0:i] is sorted and any element in

L[i:n] is greater or equal to any element in L[0:i]

 Since i is increasing, it eventually reaches n, and the

algorithm halts

20Data Structures and Algorithms 31632

 For bubble sort 1, the invariant starts from the end (watch

the Hungarian dance again …)

 The largest element must always “float” to the top, after

which it will never move again!

 Therefore the problem is reduced to L[0,n-1]

 This proves that by at most n iterations of the loop, the list

must be sorted. The inner loop also has n iterations, so by a

total of n**2 steps the sorting is done

 Example: how many swaps are needed to sort the list

L = [n, n-1, n-2, n-3, …, 2, 1, 0] ?

 This example demonstrates why bubble sort is O(n**2)

http://www.youtube.com/results?search_query=bubble+sort+dance&sm=3

21Data Structures and Algorithms 31632

 Yet one more intuitive method for sorting a list

 For simplicity, let L be a list of integers whose size is

n=len(L)

 The idea in selection sort is:

 Find the minimal element of L[0], L[1], …, L[n-1] and then make it the first (L[0])

 Find the minimal element of L[1], L[2], …,L[n-1] and make it the second element

(L[1])

 Find the minimal element of L[2], L[3], …,L[n-1] and make it the third element

(L[2])

 Repeat this process until the list is fully sorted

22Data Structures and Algorithms 31632

L = [7, 2, 8, 4, 6, 5, 1, 3]
[1, 2, 8, 4, 6, 5, 7, 3]
[1, 2, 8, 4, 6, 5, 7, 3]
[1, 2, 3, 4, 6, 5, 7, 8]
[1, 2, 3, 4, 6, 5, 7, 8]
[1, 2, 3, 4, 5, 6, 7, 8]
[1, 2, 3, 4, 6, 5, 7, 8] Sorted!

23Data Structures and Algorithms 31632

1. Start with i=0
2. For every j from i+1 until n-1, if L[j] is

smaller than L[i], swap L[i] and L[j]
3. Increment i (i = i+1)
4. Repeat step 2 until i=n-1

 This is a slightly different version than the heuristic one (two slides

back)

 In this version we also compute the minimal value as part of the

algorithm (instead of relying on an external method)

24Data Structures and Algorithms 31632

def selection_sort(L):
n = len(L)
for i in range(n):

min_index = i
for j in range(i + 1, n):

if L[j] < L[min_index]:
min_index = j

L[i], L[min_index] = L[min_index], L[i]

https://samyzaf.com/braude/DSAL/CODE/selection_sort.py

25Data Structures and Algorithms 31632

Selection Sort Run Time

List Size Run Time (seconds)
100 0.0005

200 0.0017

300 0.004

400 0.0069

500 0.0106

600 0.0154

700 0.0205

800 0.0269

900 0.0336

1000 0.0419

1100 0.0501

1200 0.0605

1300 0.0699

1400 0.082

1500 0.0931

1600 0.1069

1700 0.1193

1800 0.1358

1900 0.1495

2000 0.1676

2100 0.1827

2200 0.203

2300 0.2194

2400 0.2415

2500 0.2594

2600 0.2831

2700 0.3029

2800 0.329

2900 0.3491

Run time results obtained by running

Python 2.7.5 on a core-i7 ASUS laptop

O(𝒏𝟐)

Time(n) ≈ 0.0000000415 * 𝒏𝟐

26Data Structures and Algorithms 31632

 Although Selection sort is 4x faster that Bubble sort, it’s time complexity

is still O(𝒏𝟐) (“Quadratic Time Complexity”) which is means it is

essentially as bad as Bubble sort

 This is obvious from the following table, which shows that for sorting a

40M random list may take about 2 years

List Size Run Time (seconds)
10000 4.15 seconds

100000 415 seconds

1000000 41510 seconds

40M 66,416,171 seconds ~ 2 years

Time(n) ≈ 0.0000000415 * 𝒏𝟐

27Data Structures and Algorithms 31632

 Python code for the Selection sort algorithm and the tests code can be

downloaded from:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/selection_sort.py

 Here we introduce a more general function for computing average time which

can be used by any other sorting algorithm!

import random

def sort_average_time(sorter, list_size, num_tests):
times = list()
L = range(0, list_size)

for i in range(num_tests):
random.shuffle(L)
t0 = time.time()
sorter(L)
t1 = time.time()
t = t1-t0
times.append(t)

return sum(times)/num_tests

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/selection_sort.py
https://samyzaf.com/braude/DSAL/LAB/sort_bench.py

28Data Structures and Algorithms 31632

 Code for computing average time is also in:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py

 The following code can be used for any sort algorithm !

sorter is any function that sorts a list
Create num_tests lists of size list_size and compute
average time for doing bubble_sort on these lists

def sort_average_time(sorter, list_size, num_tests):
times = list()
L = range(0, list_size)

for i in range(num_tests):
random.shuffle(L)
t0 = time.time()
sorter(L)
t1 = time.time()
t = t1-t0
times.append(t)

return sum(times)/num_tests

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py
https://samyzaf.com/braude/DSAL/CODE/sort_bench.py

29Data Structures and Algorithms 31632

 Code for drawing average time graphs is also in:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/sort_bench.py

 The following code can be used for any sort algorithm !

def sort_runtime_graph(sorter, n=30, ntests=16):
import matplotlib.pyplot as pyplot
import sys
Sizes = [100*i for i in range(1,n)]
Times = list()
for N in Sizes:

print "N=", N
t = sort_average_time(sorter, N, ntests)
t = round(t,4)
Times.append(t)

pyplot.plot(Sizes, Times)
pyplot.xlabel('List Size')
pyplot.ylabel('Run Time')
pyplot.show()

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/sort_bench.py
https://samyzaf.com/braude/DSAL/LAB/sort_bench.py

30Data Structures and Algorithms 31632

 Divide

 If the sequence is too small (1 or two elements) then sorting is easy

 If the sequence is big, divide it to two parts and solve each part

separately

 Conquer

Recursively solve the subproblems associated with the

subsets

 Combine

Take the solutions to the sub problems and merge them into

a solution to the original problem

31Data Structures and Algorithms 31632

Example: Divide

8 2 9 1 4 7 5 3

8 2 9 1 4 7 5 3

8 2 4 79 1 5 2

8 49 52 71 3

32Data Structures and Algorithms 31632

Example: Merge

1 2 3 4 5 7 8 9

1 2 8 9 3 4 5 7

2 8 4 71 9 3 5

8 49 52 71 3

33Data Structures and Algorithms 31632

The merge_sort algorithm

def merge_sort(L):
n = len(L)
if n <= 1:

return
mid = n / 2
A = L[0:mid]
B = L[mid:]
merge_sort(A)
merge_sort(B)
M = merge(A,B)
for i in range(n):

L[i] = M[i]

https://samyzaf.com/braude/DSAL/CODE/merge_sort.py

34Data Structures and Algorithms 31632

The merge algorithm
def merge(A, B):

"merge sorted lists A and B. Return a sorted result"
result = []
i = 0
j = 0

while True:
if i >= len(A): # If A is done,

result.extend(B[j:]) # Add remaining items from B
return result # And we're totally done

if j >= len(B): # Same again, but swap roles
result.extend(A[i:])
return result

Both lists still have items, copy smaller item to result.
if A[i] <= B[j]:

result.append(A[i])
i += 1

else:
result.append(B[j])
j += 1

https://samyzaf.com/braude/DSAL/CODE/merge_sort.py

35Data Structures and Algorithms 31632

Merge Sort Run Time Benchmark

O(n log n)

Time(n) ≈ 0.000001021 * n * log n

Merg Sort Algorithm

List Size Run Time (seconds)

600 0.0041

700 0.0049

800 0.0055

900 0.0064

1000 0.0073

1100 0.008

1200 0.0089

1300 0.0097

1400 0.0105

1500 0.0113

1600 0.0122

1700 0.0131

1800 0.0138

1900 0.0147

2000 0.0155

2100 0.0165

2200 0.0174

2300 0.0183

2400 0.0191

2500 0.0201

2600 0.0209

2700 0.0217

2800 0.0225

2900 0.0236

36Data Structures and Algorithms 31632

Merge Sort Run Time

List Size Run Time (seconds)

10000 0.0940 seconds

100000 1.1754 seconds

1000000 14.1056 seconds

10M 164.5657 seconds (bubble was 6 months !!!)

1000M
21158 seconds - less than 6 hours vs. 5200 years with

bubble sort

O(n log n)

Time(n) ≈ 0.0000004282 * n * log n

37Data Structures and Algorithms 31632

 Invented by Tony Hoare 1960 (Moscow Univ.)

 Divide

 The first item is selected as the pivot, p. The pivot value is used to

partition the list to two sub-lists A and B, such that

 A consists of all elements less than p

 B consists of all elements bigger or equal to p

 Conquer

Recursively solve the sub-problems by applying

quick_sort to A and B

 Combine

Combine the solutions of quick_sort(A) and

quick_sort(B) by a simple concatenation (A then B)

38Data Structures and Algorithms 31632

The partition algorithm

def partition(L, pivot):
A = []
B = []
for element in L:

if element < pivot:
A.append(element)

else:
B.append(element)

return A, B

https://samyzaf.com/braude/DSAL/CODE/merge_sort.py

39Data Structures and Algorithms 31632

The qsort algorithm

def qsort(L):
n = len(L)
if n <= 1:

return
pivot = max(L[0], L[-1])
A, B = partition(L, pivot)
qsort(A)
qsort(B)
A.extend(B)
for i in range(n):

L[i] = A[i]

https://samyzaf.com/braude/DSAL/CODE/merge_sort.py

40Data Structures and Algorithms 31632

Run Time Benchmark

O(n log n)

Time(n) ≈ 0.0000007050 * n * log n

List Size Run Time (seconds)

500 0.0023

600 0.0029

700 0.0034

800 0.004

900 0.0044

1000 0.0051

1100 0.0057

1200 0.0063

1300 0.0069

1400 0.0075

1500 0.008

1600 0.0086

1700 0.0092

1800 0.0097

1900 0.0103

2000 0.0109

2100 0.0115

2200 0.0121

2300 0.0127

2400 0.0132

2500 0.0138

2600 0.0146

2700 0.0152

2800 0.0158

2900 0.0163

41Data Structures and Algorithms 31632

 The quick sort algorithm from last slide, although very fast

as compared to the previous algorithms, suffers from one

major problem:

 The partition routine I using additional memory (except of L)

to generates the two sub-lists (which are returned to the

caller)

 The amount of extra space used for an algorithm as a

function of its input size is called is space complexity

 Exercise: what is the space complexity of this version of

qsort?

 A more efficient approach is to perform the partition “in

place” – that is perform partition on the list itself

42Data Structures and Algorithms 31632

Tony Hoare Partition Algorithm (1960)

def partition(L, start, end):
pivot = L[start]
i = start+1
j = end
while True:

while i <= j and L[i] <= pivot:
i += 1

while i <= j and pivot <= L[j]:
j -= 1

if j < i:
break

else:
L[i], L[j] = L[j], L[i]

pivot should move to the middle
L[start], L[j] = L[j], pivot
return j

https://samyzaf.com/braude/DSAL/CODE/quick_sort2.py

43Data Structures and Algorithms 31632

Tony Hoare qsort Algorithm

def qsort(L, start=0, end=None):
if end is None: end = len(L) - 1
if start < end:

pivot = partition(L, start, end)
qsort(L, start, pivot-1)
qsort(L, pivot+1, end)

https://samyzaf.com/braude/DSAL/CODE/quick_sort2.py

44Data Structures and Algorithms 31632

Quick Sort 2 (Tony Hoare)

O(n log n) Average Time

Time(n) ≈ 0.0000004283 * n * log n

List Size Run Time (seconds)

500 0.0013

600 0.0017

700 0.002

800 0.0023

900 0.0027

1000 0.0029

1100 0.0033

1200 0.0036

1300 0.0041

1400 0.0043

1500 0.0048

1600 0.0052

1700 0.0055

1800 0.0058

1900 0.0063

2000 0.0066

2100 0.007

2200 0.0073

2300 0.0077

2400 0.008

2500 0.0085

2600 0.0089

2700 0.0092

2800 0.0096

2900 0.0099

O(n**2) worst case !!

45Data Structures and Algorithms 31632

Quick Sort 2 (Tony Hoare)

List Size Run Time (seconds)

10000 0.0394 seconds

100000 0.4930 seconds

1000000 5.9171 seconds

10M 69.0176 seconds (bubble was 6 months !!!)

1000M
8875.7747 seconds, less than 3 hours vs. 5200 years

with bubble sort

O(n log n) Average Time

O(n**2) worst case!

Time(n) ≈ 0.0000004283 * n * log n

46Data Structures and Algorithms 31632

 Bubble is a very important example of an algorithm which is

very intuitive, very easy to understand, and very easy to

prove its correctness, yet this is the worst algorithm with

respect to run time complexity

 It proves that an easy and elegant algorithm is not

necessarily good!

 It is also a great example to Tim Peters Zen principles:

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

http://www.python.org/dev/peps/pep-0020

47Data Structures and Algorithms 31632

 Intuitively method based on alphabetizing a large list of

names (like in a dictionary)

 The list of names is first sorted according to the first letter:

the names are arranged in 26 buckets

 Similarly we can sort numbers according to the most

significant digit

 But Radix sort goes by sorting on the least significant digit

first. Then on the second pass, the entire numbers are

sorted again on the second least-significant digit and so on

48Data Structures and Algorithms 31632

Radix Sort

INPUT 1st pass 2nd pass 3rd pass

329 720 720 329

457 355 329 355

657 436 436 436

839 457 839 457

436 657 355 657

720 329 457 720

355 839 657 839

It works great for decimal numbers with equal decimal length

49Data Structures and Algorithms 31632

Radix Sort

INPUT VIEW 1st pass 2nd pass 3rd pass 4th pass 5th pass

29 00029 06720 06720 00029 00029 00029

1457 01457 00355 00029 00057 00057 00057

57 00057 00436 00436 00355 00355 00355

31839 31839 01457 31839 00436 00436 00436

436 00436 00057 00355 01457 01457 01457

6720 06720 00029 01457 06720 31839 06720

355 00355 31839 00057 31839 06720 31839

But if our numbers do not have equal length?

In such case we fill “empty digits” as zeros

50Data Structures and Algorithms 31632

def radix_sort(L):
RADIX = 10
deci = 1

while True:
buckets = [list() for i in range(RADIX)]
done = True

for n in L:
q = n / deci # q = quotient
r = q % RADIX # r = remainder = last digit
buckets[r].append(n)
if q > 0:

done = False # i has more digits

i = 0 # Copy buckets to L (so L is rearranged)
for r in range(RADIX):

for n in buckets[r]:
L[i] = n
i += 1

if done: break
deci *= RADIX # move to next digit

Radix Sort Algorithm (2002)

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/radix_sort.py

51Data Structures and Algorithms 31632

Radix Sort Run Time Benchmark

O(nk)

Time(n) ≈ 0.0000019 * n

k = average num digits

List Size Run Time (seconds)

500 0.0008

600 0.001

700 0.0012

800 0.0013

900 0.0014

1000 0.0015

1100 0.0022

1200 0.0023

1300 0.0026

1400 0.0028

1500 0.0029

1600 0.0031

1700 0.0033

1800 0.0035

1900 0.0038

2000 0.004

2100 0.0041

2200 0.0043

2300 0.0045

2400 0.0047

2500 0.0049

2600 0.0051

2700 0.0054

2800 0.0056

52Data Structures and Algorithms 31632

Radix Sort Run Time

List Size Run Time (seconds)

10000 0.019 seconds

100000 0.19 seconds

1000000 1.9 seconds

10M 19 seconds (bubble was 6 months !!!)

1000M 1900 seconds – half hour vs. 5200 years with bubble sort

Time(n) ≈ 0.0000019 * n

k = average num digits

53Data Structures and Algorithms 31632

 Python’s built-in sort algorithm was invented by Tim Peters

around 2002

 It is considered to be one of the best sort algorithms in use

 We will not cover it in this preliminary course, but if you’re

interested, here are a few interesting links:

http://en.wikipedia.org/wiki/Timsort

http://www.youtube.com/watch?v=NVIjHj-lrT4

 Link to a simple test of Tim sort

http://en.wikipedia.org/wiki/Timsort
http://www.youtube.com/watch?v=NVIjHj-lrT4
https://samyzaf.com/braude/DSAL/CODE/tim_sort.py

54Data Structures and Algorithms 31632

Tim Sort Run Time Benchmark

O(n)

Time(n) ≈ 0.0000002857 * n

List Size Run Time (seconds)

500 0.0001

600 0.0001

700 0.0001

800 0.0002

900 0.0002

1000 0.0002

1100 0.0003

1200 0.0003

1300 0.0003

1400 0.0003

1500 0.0004

1600 0.0004

1700 0.0004

1800 0.0004

1900 0.0005

2000 0.0005

2100 0.0005

2200 0.0006

2300 0.0006

2400 0.0006

2500 0.0007

2600 0.0007

2700 0.0007

2800 0.0008

55Data Structures and Algorithms 31632

Tim Sort Run Time (average)

List Size Run Time (seconds)

10000 0.00286 seconds

100000 0.0286 seconds

1000000 0.286 seconds

10M 2.86 seconds (bubble was 6 months !!!)

1000M 286 seconds – 5 minutes vs. 5200 years with bubble sort

Time(n) ≈ 0.0000002857 * n

Worst case is still O(n * log n)

