
1Data Structures and Algorithms 31632

INTRODUCTION TO

DATA STRUCTURES IN

PYTHON

Part 1

2Data Structures and Algorithms 31632

https://samyzaf.com/braude/DSAL

https://samyzaf.com/braude/DSAL

3Data Structures and Algorithms 31632

DATA STRUCTURES

AND

ALGORITHMS

Introduction to:

4Data Structures and Algorithms 31632

 Systematic methods for organizing information in a

computer

 A data type consists of the values it represents and the

operations defined upon it

 In the C programming language, a data type is usually

represented by the struct concept.

 But the struct represents only the data type values and

does not describe what kind of operations can be applied on

the data type

 In object oriented languages, the class concept extends the

struct concept by also adding methods that can be applied

on a data type

5Data Structures and Algorithms 31632

 Data types may be viewed in several ways:

 As abstract entities

 As concrete implementations

 For example, there are many ways to represent a floating number like

x=5.2 – here is one common way to do it (32 bit arch):

5.2 = 5 + 0.2 = 101 + 0.0011001100110011001100110011…

= 101.0011001100110011001100110011…

= + 1.010011001100110011001100110011… * 2^2

exp = e +127

See comment

Below slide

6Data Structures and Algorithms 31632

 Note that some data types may not have a fully accurate

representation!

 For example, the float number x=5.2 is not really equal to its binary

representation above! Moreover, it will have a different value in a 64

bit architecture!

 This is however will not concern us in this course as we’re more

concerned with the abstract view of data types!

 Binary representations of data types is the business of other courses

and not ours!

 We do however need to be aware of the basic ideas of

representations in order to be able to do realistic analysis of

algorithms, estimate input and output sizes, estimate space and run

time figures

7Data Structures and Algorithms 31632

 An abstract data type (ADT) is a programmer-defined data

type that specifies a set of data values and a collection of

well-defined operations that can be performed on those

values

 Only the formal definition of the data type is important and

NOT how it is implemented in binary form or in hardware

 This is sometimes called:

“Separation of Interface and Implementation”

 Information Hiding – how the data is represented and how

the operations are implemented is completely irrelevant

when we define a new Abstract Data Type (ADT) !

8Data Structures and Algorithms 31632

Example: String ADT

String Data Type:
An string of characters like
s = "Hello World"
s = "Guido Van Rossum, 1993"

Operations:
upper(s) All characters to upper case
lower(s) All characters to lower case
find(s,w) Find a word w in s (return index)
replace(s,w1,w2) Replace sub word w1 with w2

s = "Hello World"
upper(s) = "HELLO WORLD"
lower(s) = "hello world"
find(s, "Wo") = 6
replace(s, "lo", " NEW") = "Hel NEW World"

EXAMPLE CODE:

9Data Structures and Algorithms 31632

 Note that the term “string of characters” does not imply

anything about its implementation (how English characters

are represented?)

 It can be implemented as a C array of characters

terminated by a NULL

 It can be implemented like a Java or C++ String object

 We may even decide to encode and compress the string if it

size is too large

 We can decide to break each string to chunks of 4K in

different memory locations and keep a central table for

accessing these chunks, etc …

10Data Structures and Algorithms 31632

 Similarly, nothing on how the find() and replace()

algorithms should be implemented is mentioned!

 All we care is about how we Interface with the string data

type? (How to do? instead of how it is done?)

 All implementation issues are irrelevant to the ADT

specification!

11Data Structures and Algorithms 31632

 After defining an ADT we will proceed to the second

part of our course: ALGORITHMS

 Named after the mathematician Muḥammad ibn Mūsā

al-Khwārizmī (Bagdad 780-850) which invented the

concept and the first mathematical algorithms

(including an algorithm for solving quadratic equations)

 ALGORITHM:

 An effective method expressed as a finite list

of well-defined instructions for calculating a function

(Wikipedia)

 Simply put, a data structure is a systematic way of

organizing and accessing data, and an algorithm is a

step-by-step procedure for performing some task in a

finite amount of time (Goodrich/Tamassia/Goldwasser

book)

الخوارزميأبو عبد الله محمد بن موسى

http://www.dace.co.uk/al_khwarizmi.htm
http://en.wikipedia.org/wiki/Khwarizmi#Biography
http://en.wikipedia.org/wiki/Khwarizmi#Biography
http://en.wikipedia.org/wiki/Khwarizmi#Biography

12Data Structures and Algorithms 31632

 GCD = Greatest Common Divisor

 Perhaps one of the most famous algorithms in history

 Formulated by Euclid around 300 BC (without knowing the algorithm concept)

 Problem: given two integers A and B, find the largest integer G which divides

both A and B

 Here is the most naïve way to solve the problem:

def gcd1(a, b):
if a == 0: return b
if b == 0: return a
m = min(a,b)
greatest = 1
d = 1
while d <= m:

if a%d == 0 and b%d == 0:
greatest = d

d += 1
return greatest

http://samyzaf.com/braude/DSAL/CODE/gcd.py

13Data Structures and Algorithms 31632

 Modern algorithms are often written as

“Flow Charts” as the figure on the right

side which describes Euclid’s algorithm

 There are many graphical computer

programs for drawing beautiful Flow

Charts which you can use for designing

your algorithms

 Here is a Flow Chart for a popular

version of Euclid’s Algorithm:

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Algorithm

14Data Structures and Algorithms 31632

 The other method for expressing Algorithm is by a semi-formal

language called Pseudo-Code

 Since Python is simple and very readable as pseudo-code and at the

same time it is also a fully running formal language, there are more

and more courses and books that use it for a data structures and

algorithms courses

def gcd2(a, b):
if b == 0:

return a
else:

if a>b:
a = a-b

else:
b = b-a

return gcd2(a,b)

http://samyzaf.com/braude/DSAL/CODE/gcd.py
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Algorithm

15Data Structures and Algorithms 31632

 Theorem: Assume that a>b>0, are two integers.

For any integer d: d divides a and b  d divides a-b and b

 Proof is easy!

 Definition: div(a,b) = {d | d divides a and b}

 Consequence: div(a,b) = div(a-b, b)

 Consequence: gcd(a,b) = gcd(a-b, b)

16Data Structures and Algorithms 31632

def gcd2(a, b):
if b == 0:

return a
else:

if a>b:
a = a-b

else:
b = b-a

return gcd2(a,b)

Problem with recursion:

However the gcd2 is recursive, and thus can fail if a and b are very large:

https://samyzaf.com/braude/DSAL/CODE/gcd.py

17Data Structures and Algorithms 31632

def gcd3(a, b):
"Find the greatest common divisor for two integers: a,b"

if a == 0:
return b

elif b == 0:
return a

while a != b:
if a > b:

a = a - b
else:

b = b - a
return a

https://samyzaf.com/braude/DSAL/CODE/gcd.py

18Data Structures and Algorithms 31632

 Python contains an official GCD algorithm as part of the fractions

module:

def gcd(a,b):
while a:

a, b = b%a, a
return b

 This follows immediately from: gcd(a,b) = gcd(a, b-a)

 For any integer k, gcd(a,b) = gcd(a, b – ka) = gcd(b-ka, a)

 If k = b/a, then b-ka = b%a, and we get: gcd(a,b) = gcd(b%a, a)

 Why the algorithm must stop? (could be an infinite loop?)

Prove that the numbers are decreasing until a==0

http://www.python.org/dev/peps/pep-0020/

19Data Structures and Algorithms 31632

import time

def gcd_time_test(f, a, b):
print "Running %s(%d,%d)" % (f.func_name, a,b)
start = time.time()
try:

print "gcd =", f(a,b)
except Exception as e:

print e
end = time.time()
print "runtime = %.3f seconds" % (end-start,)

20Data Structures and Algorithms 31632

def test1():
a = 2**13 * 3**4 * 5**3
b = 2**7 * 3**5 * 5**2
gcd_time_test(gcd1, a, b)
gcd_time_test(gcd2, a, b)
gcd_time_test(gcd3, a, b)
gcd_time_test(gcd4, a, b)

This is just a simple performance test.

A more rigorous test should sample a

larger variety of numbers and each

calculation should be repeated several

times (average time)

https://samyzaf.com/braude/DSAL/CODE/gcd.py

21Data Structures and Algorithms 31632

 Data Type: unsigned integers: 0, 1, 2, 3, 4, 5, …

 Definition: a prime number is an integer p>1 which has exactly two

divisors: 1, and p.

 Problem: Given a positive integer n, find if n is a prime number?

 Here is a Naïve simple algorithm that solves this problem:

def is_prime(n):
if n <=1: return False
i=2
while i<n:

if n%i==0:
return False

i += 1
return True

https://samyzaf.com/braude/DSAL/LAB/primes.py

22Data Structures and Algorithms 31632

 In Object Oriented Design, a Container is any object that

contains other objects in itself

 Other words: a collection is a group of values with no

implied organization or relationship between the individual

values (Rance Necaise book)

 Some languages restrict the elements to a specific data

type such as integers or floating-point values

 Python collections do not have such restriction

23Data Structures and Algorithms 31632

 The programming languages and literature are full with

many such object with many different names

 List

 Array

 Sequence

 Vector

 Set

 Stack

 Queue

 Heap

 Map

 Hash Table

 Dictionary

 Tree

 Graph

 Multimap

 Multiset

 Priority Queue

 String

24Data Structures and Algorithms 31632

 In contrast to Container object, a Leaf Object is an object

that does not contain any reference to other objects (“has

no child objects”)

 In Python these are sometimes called “primitive types”

 Integer

 Float

 Complex number

 Boolean

 Leaf Objects are the building blocks from which all other

objects are built

25Data Structures and Algorithms 31632

 Integer: -5, 19, 0, 1000 (C long)

 Float: -5.0, 19.25, 0.0, 1000.0 (C double)

 Complex numbers: a+bj

 Boolean: True, False

 Long integers (unlimited precision)

 Immutable string: “xyz”, “Hello, World”

26Data Structures and Algorithms 31632

Arithmetic Operations

Operation Result
x + y sum of x and y

x - y difference of x and y

x * y product of x and y

x / y quotient of x and y (Integer division if x,y integers

x % y remainder of x / y

-x x negated

+x x unchanged

abs(x) absolute value or magnitude of x

int(x) x converted to integer

long(x) x converted to long integer (this is very long …)

float(x) x converted to floating point

complex(re,im) a complex number with real part re, imaginary part im. im defaults to zero

c.conjugate() conjugate of the complex number c. (Identity on real numbers)

divmod(x, y) the pair (x / y, x % y)

pow(x, y) x to the power y

x ** y x to the power y

27Data Structures and Algorithms 31632

Comparisons

Operation Meaning

< strictly less than

<= less than or equal

> strictly greater than

<= greater than or equal

== equal

!= not equal

is object identity

is not negated object identity

28Data Structures and Algorithms 31632

Bitwise Operations

Operation Result
x | y bitwise or of x and y

x ^ y bitwise exclusive or of x and y

x & y bitwise and of x and y

x << n x shifted left by n bits

x >> n x shifted right by n bits

~x the bits of x inverted

29Data Structures and Algorithms 31632

The Complex Numbers Class

import cmath
z = cmath.sqrt(-9)
 3j
z = cmath.sqrt(5-12j)
 (3-2j)
z.imag
 -2.0
z.real
 3.0
z.conjugate()
 (3+2j)

The cmath module defines Complex

numbers arithmetic

Python contains a built-in type (class) for

complex numbers

A complex number object has two fields

and one method:

imag imaginary part

real real part

conjugate() The conjugate number

30Data Structures and Algorithms 31632

Methods for creating new

objects
Constructors

Methods for accessing internal

data fields without modifying the

data!

Accessors

Methods for modifying object

data fields
Mutators

Methods for processing data

elements sequentially
Iterators

31Data Structures and Algorithms 31632

 L = list_create1(e0, e1, e2,... ,en-1)

 Create a new list L from n elements: e0, e1, …, en

 L = list_create2(other)

 Create a new list L from other list or another container structure

 get_item(L,i) - Get element i of list L

 set_item(L,i,e) - Set element i of list L to e

 contains(L,e)

 Check if element e belongs to list L. Returns: Boolean True or False

 append(L,e)

 Add a new element e to L

 What if e already belongs to L? (answer: duplications are allowed!)

 remove(L,e)

 Remove an element e from L

 What if e is not in L? (two possibilities: 1. do nothing, 2. raise an error)

32Data Structures and Algorithms 31632

 insert(L, index, e)

 Insert a new element e at index index

 Side effect: list grows by one element

 size(L)

 Return the size of L

 extend(L,L2)

 Extend list L by list L2

 reverse(L)

 slice(L,i,j)

 Return a sub-list consisting of all elements of L from index i to index j-1

 index(L,e)

 Find the index of element e in L

33Data Structures and Algorithms 31632

 In this highly recommended methodology you write your tests before the

implementation of your ADT !!!

 After implementation, your tests should run and PASS after each

modification you make to your implementation (“nightly test regression”)

 The following tests are your “insurance policy” that your implementation

is correct. The more tests you write, the better you’re insured

Testing our List ADT
L1 = list_create1(2, 3, 5, 7, 11)
L2 = list_create2(L1) # copy constructor
assert L2 == L1 # Assertion
append(L1, 37)
remove(L1, 2)
remove(L1, 3)
L3 = list_create1(5, 7, 11, 37)
assert L1 == L3 # Assertion

34Data Structures and Algorithms 31632

 After defining an abstract data type, we need to implement it

in a specific programming language

 First we must define a concrete data structure in the

particular language for representing our abstract data

 Python basic data structures are usually implemented in the

C programming language

 More complex data structures are usually implemented over

the Python languages itself, and later transformed to C code

if performance is critical

35Data Structures and Algorithms 31632

 Lists in Python are implemented as a C array of PyObject pointers

 **ob_item is an array of pointers to PyObject pointers

 A Python list is therefore an array of references to any Python

objects!

 A PyListObject can grow and shrink (so there could be many calls

to malloc and free on the way … but Python users shouldn't care)

typedef struct {
int ob_refcnt ;
struct _typeobject *ob_type ;
int ob_size ;
PyObject **ob_item ;
int allocated ;

} PyListObject ;

36Data Structures and Algorithms 31632

static int app1(PyListObject *self, PyObject *v) {
Py_ssize_t n = PyList_GET_SIZE(self) ;

assert (v != NULL) ;
if (n == PY_SSIZE_T_MAX) {

PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list") ;

return -1 ;
}

if (list_resize(self, n+1) == -1) /* increase list size by +1 */
return -1 ;

Py_INCREF(v) ; /* incr reference count of v */
PyList_SET_ITEM(self, n, v) ; /* add pointer v at the end */
return 0 ;

}

37Data Structures and Algorithms 31632

static int ins1(PyListObject *self, Py_ssize_t where, PyObject *v) {
Py_ssize_t i, n = Py_SIZE(self) ;
PyObject **items ;
if (v == NULL) {

PyErr_BadInternalCall() ; return -1 ;
}
if (n == PY_SSIZE_T_MAX) {

PyErr_SetString(PyExc_OverflowError, "cannot add more objects to list") ;
return -1 ;

}
if (list_resize(self, n+1) == -1)

return -1 ;
if (where < 0) {

where += n ;
if (where < 0)

where = 0 ;
}
if (where > n)

where = n ;
items = self->ob_item ;
for (i = n ; --i >= where ;) /* Move all items [i:n] to [i+1:n+1] ! */

items[i+1] = items[i] ;
Py_INCREF(v) ;
items[where] = v ; /* insert the new value v at index where */
return 0 ;

}

No time in class

Home reading!

38Data Structures and Algorithms 31632

/* Reverse a slice of a list in place, from lo to hi (exclusive) */
static void reverse_slice(PyObject **lo, PyObject **hi) {

assert(lo && hi) ; /* make sure lo and hi are not NULL */
PyObject* tmp
--hi ; /* hi itself is excluded */
while (lo < hi) {

tmp = *lo ;
*lo = *hi ;
*hi = t ;
++lo ;
--hi ;

}
}

39Data Structures and Algorithms 31632

def _reverse_recursive(S, begin, end):
""" Reverse elements in slice S[begin:end+1] """
if end>begin:

swap first and last elements
S[begin], S[end] = S[end], S[begin]
Recursion:
_reverse_recursive(S, begin+1, end-1)

def reverse_recursive(S):
_reverse_recursive(S, 0, len(S)-1)

40Data Structures and Algorithms 31632

def reverse_iterative(S):
""" Reverse elements in sequence S."""
a, b = 0, len(S)-1
while a < b:

S[a], S[b] = S[b], S[a]
a, b = a+1, b-1

Example:
S = [0, 1, 2, 3]
a, b = 0, 3 ==> [3, 1, 2, 0]
a, b = 1, 2 ==> [3, 2, 1, 0]
a, b = 2, 1 ==> done

41Data Structures and Algorithms 31632

 Remember: tests must be written before you even think

about an implementation!

 Make sure your tests cover the major features

 After writing an implementation you must run your tests: if

they fail, then your implementation is bad

 After changing an implementation you must run all the tests

again

 You may decide to throw away the whole implementation

and write a new one, without any change to your ADT

specification (“same Interface different implementation”) –

your tests should pass again with the new implementation!

42Data Structures and Algorithms 31632

 There should be a total separation between an ADT

specification (sometimes called “Interface specification”) and its

possibly many implementations

 For example, the Python Language has a full implementation

over Java (called Jython), and at the same time Microsoft has a

full implementation of Python over C# which is called IronPython

 The Python implementation over C is called CPython

 The same Python tests must all pass in all three

implementations: CPython, Jython, and IronPython !

 The Python language itself is a pure interface! Unlike low level

languages such as C it does not have any business with

hardware registers, contiguous memory cells, etc. No relation to

hardware at all!

43Data Structures and Algorithms 31632

 No clear separation between major and minor data types

 For example, when we see append(a,b) it’s not always

clear which is the list and who is the element?

 Composite expressions like:

insert(append(extend(L,L2),a3),7,b4)
can be very hard to read and understand

 Generic method names like append(), insert(),

remove(), size(), etc., cannot be reused for a different

data structure (like FILE or Vector), since they are global

and already taken by the List data type … this is a serious

trouble.

 Code reuse is difficult

44Data Structures and Algorithms 31632

 L = list_create1(e0, e1, e2,..., en-1) [constructor]

 Create a new list L from n elements: e0, e1,... , en-1

 L = list_create2(other) [constructor]

 Create a new list L from other list or a container structure

 L.item(i) - Get element i of list L [accessor]

 L.contains(e) [accessor]

 Check if element e belongs to list L

 Returns: boolean True or False

 L.append(e) [mutator]

 Add a new element e to L

 What if e already belongs to L? (answer: duplications are allowed!)

 L.remove(e) [mutator]

 Remove an element e from L

 What if e is not in L? (two possibilities: 1. do nothing, 2. raise an error)

45Data Structures and Algorithms 31632

 L.replace(index, e) [mutator]

 Replace element at index index with e

 L.insert(index, e) [mutator]

 Insert a new element e at index index

 Side effect: list grows by one element

 L.size() [accessor]

 Return the size of L

 L.extend(L2) [mutator]

 Extend list L by list L2

 L.reverse() [mutator]

 L.slice(i,j) [accessor]

 Return a sub-list consisting of all elements of L from index i to index j-1

 L.index(e) [accessor]

 Find the index of element e in L

46Data Structures and Algorithms 31632

 We need to update all our procedural oriented test to be object oriented

Testing our List ADT
L1 = list_create1(2,3,5,7,11)
L2 = list_create2(L1) # “copy constructor”
assert L2 == L1 # Assertion
assert L2.item(0) == 2
L1.append(37)
L1.remove(2)
L1.remove(3)
L3 = list_create1(5,7,11,37)
assert L1 == L3 # Assertion
assert L3.index(37) == 3 # Assertion
L3.reverse()
L4 = list_create1(37,11,7,5)
assert L3 == L4 # Assertion

47Data Structures and Algorithms 31632

 The functional notation

foo(x), bar(x,y), baz(x,y,z)
was invented by the Mathematician Leonard Euler at 1748

 There is no specific sacred or holly reason for this notation!

Euler could at the same time use ‘<x>f’ or ‘f-x-’ or many

other possible notations

 We already have exceptions to this rule when we write x+y

instead of add(x,y), or x**n instead of power(x,n).

 Python writes: L = [a, b, c] instead of

list_create(a,b,c)

48Data Structures and Algorithms 31632

 The most basic constructor for lists is:

L = [x0, x1, x2, ..., xn]

 It corresponds to: list_create1(x0, x1, x2, …, xn)

 The other constructor is list(container_object)

 Lists can be created from a variety of other container

objects such as: set, array, dictionaries, and other list

49Data Structures and Algorithms 31632

 Specification name and Implementation name do not have

to be the same!

 For example, in Python, the call

L = list_create1(e0, e1, e2,..., en-1)
has been changed to:

L = [e0, e1, e2, …, en-1]
and the call

L.contains(e)
Has been changed to:

e in L

 The only essential thing is that the name conveys the

meaning of the operation, and the operation is precisely

defined

50Data Structures and Algorithms 31632

Python List Syntactic Sugar

Operation Python Syntactic Sugar

L=list_create1(a,…,b) L = [a, ...,b]

L=list_create2(other) L = list(other)

L.contains(e) e in L

L.item(i) L[i]

L.size() len(L)

L.slice(i,j) L[i:j]

L.equals(other) L == other

L.remove_by_index(i) del L[i]

L1.add(L2) L1+L2

L.mul(n) L*n or n*L

51Data Structures and Algorithms 31632

 Some object oriented languages (like C++) contain an additional

method type: destructor

 A destructor is a method for destroying (or terminating) an object

 A destructor usually frees the memory that was used by the object and

may also perform additional cleanup and finalization tasks

 In such languages, failure to delete objects at the right time can lead to

serious memory problems, and even to program crash

 Modern object oriented languages such as Java, C#, and Python,

contain a mechanism (called “garbage collection”) which automatically

deletes objects as soon as they’re not needed anymore

 We will therefore not bother about this concept anymore in this course

 In extreme cases if needed you can use the Python del operator to

delete objects: del L

52Data Structures and Algorithms 31632

 Sequence type (container) in which elements are pushed and popped

out from the top end

 AKA LIFO – Last In First Out

53Data Structures and Algorithms 31632

 s = Stack() Constructor

 Create a new empty stack

 s.push(item) Mutator

 Add an item to the top of the stack

 s.pop() Mutator

 Pop an item to the top of the stack

 s.peek() Accessor

 Return the item to the top of the stack (don’t pop it!)

 Return None if stack is empty (this is not a good idea, why?)

 s.size() Accessor

 Return the number of items in the stack

 s.is_empty() Accessor

 Return True if stack is empty, False if stack is non-empty

54Data Structures and Algorithms 31632

s = Stack()
s.push(1)
s.push(1)
s.push(2)
assert s.pop() == 2
assert s.pop() == 1
assert s.pop() == 1
assert s.is_empty()

55Data Structures and Algorithms 31632

s = Stack()
expression = "a+(b*(c+d)+x*(y-a)+z)-n“

Check if left/right parens are
legally balanced
for char in expression:

if char == '(':
s.push('L')

if char == ')':
if s.peek() == 'L':

s.pop()
else:

s.push('R')

assert s.is_empty()

56Data Structures and Algorithms 31632

s = Stack()
expression = "a+(b*(c+d)+x*(y-a)+z)-n“

Frame 0: empty stack
Frame 1: L
Frame 2: L, L
Frame 3: L
Frame 4: L, L
Frame 5: L
Frame 6: empty stack

57Data Structures and Algorithms 31632

class Stack :
def __init__(self) :
self.items = []

def push(self, item) :
self.items.append(item)

def pop(self) :
return self.items.pop()

def peek(self):
return self.items[-1]

def is_empty(self) :
return (self.items == [])

http://www.greenteapress.com/thinkpython/thinkCSpy/html/chap18.html

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/stack.py
http://www.greenteapress.com/thinkpython/thinkCSpy/html/chap18.html

