
1 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TRANSPORT LAYER

SOCKET PROGRAMMING

Part 4

2 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Transport Layer

 Data transmission service goals for the application layer

 Efficiency

 Reliability

 Accuracy

 Cost-effective

 The entity that does the work is called the transport entity

 The transport entity

 Is usually part of the operating system kernel

 sometimes a separate library package which is loaded by the OS or

even user processes

 And sometimes even on the network interface card

 The transport entity (TCP) employs the services of the network

layer (IP), and its associated software and hardware (cards and

device drivers)

3 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Transport Layer

 The transport entity code runs entirely on users machines, but the

network layer mostly runs on routers, cards, and other bridging

hardware

 Bridging hardware is inherently unreliable and uncontrollable

 Ethernet cards, routers, and similar hardware do not contain

adequate software for detecting and correcting errors

 To solve this problem we must add another layer that improves the

quality of the service:

 the transport entity detects network problems: packet losses,

packet errors, delays, etc.

 and then fixes these problems by: retransmissions, error

corrections, synchronization, and connection resets

 Transport layer interface must be simple and convenient to use

since it is intended for a human user

4 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Transport Service Primitives

Server

Client

Server/Client

Server/Client

Server/Client

 These are the basic logical actions between two communication points

 A communication point is created by a process that runs on a machine

 There are several software implementations of these abstract model

 The most common is called: “Berkeley Sockets”

 Note that the “LISTEN” and “RECEIVE” actions do not involve any

packet transmission! These are actually operating system states:

 LISTEN – go to sleep until a connection arrives (OS is attending)

 RECEIVE – go to sleep until data arrives (OS does the buffering)

5 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Ethernet Frame

T
C

P
 h

e
a
d
e
r

E
th

e
rn

e
t

h
e
a
d
e
r

IP
 h

e
a
d
e
r

IP datagram

TCP segment

E
th

e
rn

e
t
tr

a
ile

r

Packet Hierarchy

Physical Layer

Network Layer

Transport Layer

6 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Berkeley Sockets

 Sockets first released as part of the Berkeley UNIX

4.2BSD software distribution in 1983

 They quickly became popular

 The socket primitives are now widely used for Internet

programming on many operating systems

 There is a socket-style API for Windows called ‘‘winsock’’

7 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Berkeley Socket Services

 The SOCKET primitive creates a new endpoint and allocates table space for it

within the transport entity

 The first four primitives are executed in that order by servers

 A successful SOCKET call returns an ordinary file descriptor for use in

succeeding calls, the same way an OPEN call on a file does

ClientServer

Server

Server

Server

Client

Client/Server

Client/Server

Client/Server

8 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SERVER SOCKET

 Newly created socket has no network address (yet)

 The machine may have several addresses (thru several interface cards)

 It must be assigned using the BIND primitive method

 Once a socket has bound an address, remote clients can connect to it

 The parameters of the SOCKET call specify the addressing format to

be used, the type of service desired (reliable byte stream , DGRA, etc),

and the protocol.

import socket
Creating a server socket on the local machine
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 2525))
sock.listen(5)
new_sock, (client_host, client_port) = sock.accept()
print "Client:", client_host, client_port

9 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

CLIENT SOCKET

 A client socket is created exactly as a server socket except that it does

not locally bound to the machine, and it does not listen

 A client socket is connecting to an already running server socket,

usually on a remote host, but also on the local host (as yet one more

method of inter-process communication!)

import socket
Creating a client socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = socket.gethostname()
connect to local host at port 2525
server = (host, 2525)
sock.connect(server)

10 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

CONNECT & ACCEPT primitives

 When a CONNECT request arrives from a client to the server, the

transport entity creates a new copy of the server socket and returns

it to the ACCEPT method (as a file descriptor)

 The server can then fork off a process or thread to handle the

connection on the new socket and go back to waiting for the next

connection on the original socket

 ACCEPT returns a file descriptor, which can be used for reading and

writing in the standard way, the same as for files.

import socket
Creating a server socket on the local machine
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 2525)) # bind to all local interfaces
sock.listen(5) # allow max 5 simultaneous connections
newsock, (client_host, client_port) = sock.accept()
print "Client:", client_host, client_port

11 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SEND & RECEIVE primitives

 The CONNECT primitive blocks the caller and actively starts the

connection process (the transport entity is in charge)

 When it completes (when the appropriate TCP segment is received

from the server), the client process is awakened by the OS and the

connection is established

 Both sides can now use SEND and RECEIVE to transmit and receive

data over the full-duplex connection

server to client:
newsock.send("Hello from Server 2525")

client to server
server = (host, 2525)
sock.connect(server) # connect to server
sock.recv(100) # receive max 100 chars

12 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

CLOSE primitive

 When both sides have executed the CLOSE method, the connection is

released

 Berkeley sockets have proved tremendously popular and have

became the standard for abstracting transport services to applications

 The socket API is often used with the TCP protocol to provide a

connection-oriented service called a reliable byte stream

 But sockets can also be used with a connectionless service (UDP)

 In such case, CONNECT sets the address of the remote transport

peer and SEND and RECEIVE send and receive UDP datagrams to

and from the remote peer

Server:
newsock.close()

Client
sock.close()

13 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

The Simplest Client/Server App

import socket
creating a client socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = socket.gethostname()
connect to local host at port 2525
server = (host, 2525)
sock.connect(server)
print sock.recv(100)
sock.close()

import socket
Creating a server socket on the local machine
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 2525))
sock.listen(5)
newsock, (client_host, client_port) = sock.accept()
print "Client:", client_host, client_port
newsock.send("Hi from server 2525")
newsock.close()

SERVER

CLIENT

Q: How many clients can connect to this server?

14 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Socket

Programming

Example in C:

Internet File

Server

Client code using sockets:

Client program that requests a

File from a server program

15 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Socket

Programming

Example in C:

Internet File

Server (2)

Server code

16 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

C Socket API (1)
// Usually located at /usr/include/sys/socket.h

/* Create a new socket of type TYPE in domain DOMAIN, using
 protocol PROTOCOL. If PROTOCOL is zero, one is chosen automatically.
 Returns a file descriptor for the new socket, or -1 for errors. */

extern int socket (int __domain, int __type, int __protocol) __THROW ;

/* Give the socket FD the local address ADDR (which is LEN bytes long). */

extern int bind (int __fd, __CONST_SOCKADDR_ARG __addr, socklen_t __len)
 __THROW;

/* Put the local address of FD into *ADDR and its length in *LEN. */
extern int getsockname (int __fd, __SOCKADDR_ARG __addr,
 socklen_t *__restrict __len) __THROW;

/* Open a connection on socket FD to peer at ADDR (which LEN bytes long).
 For connectionless socket types, just set the default address to send to
 and the only address from which to accept transmissions.
 Return 0 on success, -1 for errors.
 This function is a cancellation point and therefore not marked with
 __THROW. */

extern int connect (int __fd, __CONST_SOCKADDR_ARG __addr, socklen_t __len);

17 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

C Socket API (2)
/* Open a connection on socket FD to peer at ADDR (which LEN bytes long).
 For connectionless socket types, just set the default address to send to
 and the only address from which to accept transmissions.
 Return 0 on success, -1 for errors.

 This function is a cancellation point and therefore not marked with
 __THROW. */

extern int connect (int __fd, __CONST_SOCKADDR_ARG __addr, socklen_t __len);

/* Send N bytes of BUF to socket FD. Returns the number sent or -1.

 This function is a cancellation point and therefore not marked with
 __THROW. */

extern ssize_t send (int __fd, const void *__buf, size_t __n, int __flags);

/* Read N bytes into BUF from socket FD.
 Returns the number read or -1 for errors.

 This function is a cancellation point and therefore not marked with
 __THROW. */

extern ssize_t recv (int __fd, void *__buf, size_t __n, int __flags);

18 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

WWW Client Sockets (v1)
import socket, os

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
google_server = ("www.google.com", 80)
sock.connect(google_server)
HTTP protocol "GET" command
sock.send("GET / HTTP/1.0\r\n\r\n")

Receiving the index.html file
bufsize = 4096
html_file = "c:/workspace/index.html"
f = open(html_file, "w")
while True:
 data = sock.recv(bufsize)
 if not data:
 f.close()
 break
 f.write(data)

os.system("notepad.exe " + html_file)
#os.startfile(html_file)

19 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python File Server (v1)

import socket, sys

servsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
servsock.bind(("", 12345)) # bind to all local host interfaces
servsock.listen(25) # set maximum accept rate to 25 connections

while True:
 newsock, address = servsock.accept()
 file = newsock.recv(255) # receive file name: max 255 chars
 print "File =", file
 f = open(file, "rb") # open file for reading in binary mode
 while True:
 data = f.read(4096)
 if not data:
 f.close()
 break
 n = newsock.send(data)
 if n<len(data):
 raise Exception("send error: transmitted less than data length")
 newsock.close()

20 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python File Client (v1)

To be run from the command line
import socket, sys

remote_file_name = sys.argv[1]
local_file_path = sys.argv[2]

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("localhost", 12345))
sock.send(remote_file_name)
f = open(local_file_path, "wb")
while True:
 data = sock.recv(4096)
 if not data:
 f.close()
 break
 f.write(data)

sock.close()

21 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Conversation Techniques

 A reliable and robust communication between two sockets, can

sometimes become a highly complex and fragile

 To simplify it and manage its complexity, some strict rules must be

followed

 A message must be sent in one of the following modes:

1. Fixed length (like always 40 bytes, with padding if necessary)

2. Delimited (like: “name = Dan Hacker\n”)

3. Predefined length:

 “240 message … ends … after … 240 bytes”

The size itself can be of fixed length or delimited

4. End by shutting down the connection

 In practice, all these 4 methods are used in combination!

22 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Safe Socket Send

def safe_send(sock, message):
 i = 0
 n = len(message)
 while i < n:
 sent = sock.send(message[i:])
 if sent == 0:
 raise RuntimeError("socket connection broken")
 i += sent

 In general this is not needed, but in some rare cases the socket send method

is not guaranteed to send all the message!!

 It may send just a part of it, and therefore we must ensure sending the full

message

 In most cases (short messages) this is not needed, but keep this in mind!

 The sendall() method has the same effect

23 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

A Safe Socket sendall() method

r = sock.sendall(data)
if not r is None:
 print "Exceptional socket sendall return code:", r
 raise Exception("send error: data was not fully transmitted")

 The socket class is already equipped with a safe sendall() method

which does not return until it sent the whole message, or until an error

is encountered

 None is returned on success. On error, an exception is raised, and

there is no way to determine how much data, if any, was successfully

sent.

24 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Receiving Fixed Size Message

def recv_fixed_size(sock, expected_size, bufsize=0):
 if bufsize == 0:
 bufsize = min(expected_size, 4096)
 message = ""
 while len(message) < expected_size:
 chunk = sock.recv(bufsize)
 if chunk == "":
 raise RuntimeError("socket connection broken")
 message += chunk
 return message

 The socket recv() method may get less characters than requested

 To be fully safe, we need to run recv() several times to get the full

message (provided we know the exact message size in advance!)

 The next function ensures that we get an exact number of bytes from

the socket

25 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Receiving a Delimited Message

def recv_delimited_message(sock, limit='\n'):
 message = ""
 while True:
 char = sock.recv(1)
 if char == "":
 return None
 if char == limit:
 break
 else:
 message += char
 return message

 Delimited message are messages that end with a delimiting character that is

agreed by both sides

 The usual delimiting character is the newline character ‘\n’, or some special

character (such as ‘@’)

 This is however slow due to the fact that we must receive 1 character at a time

26 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

 EXAMPLE

 Note that the message itself drops the delimiting char! (i.e., the

delimiting char is not part of the message!)

Receiving a Delimited Message

client side:
sock.sendall(“c:/workspace/oliver.txt” + '\n')

server side:
file = recv_delimited_message(servsock)
file = “c:/workspace/oliver.txt”

27 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Send and Receive with a Size Header

 A faster technique for sending and receiving messages with a known size is by

appending a “fixed size header” to the message itself

 Simple “encode/decode” methods are enough to make this technique very

easy and efficient to use (between a client and server that agree on it)

 Here is the key idea:

 Compute the message size in hexadecimal form

 Pack this size into an 8 chars hex string, possibly by adding leading zeros

to it if it is too short

 Place the header in front of the message and send it!

 Example: message = “Hello Web Wide World”

 Decimal size = 20

 Hexadecimal = 0x14

 Header (8 bytes) = “00000014” (removed the leading 0x)

 Send message = “0000014Hello Web Wide World”

28 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Code for: send_size and recv_size

 Example: recv_size(“0000014Hello Web Wide World”)

Will first get the first 8 chars header: “00000014”

Then convert it to decimal: size=20

Then recv the next 20 chars which form the message itself:

 “Hello Web Wide World”

convert message length to hex and chop the leading '0x'
def send_size(sock, message):
 size_string = hex(len(message))[2:]
 data = (8 - len(size_string)) * '0' + size_string + message
 sock.sendall(data)

The receiver gets the first 8 bytes, adds a “0x”
prefix, and converts the hex to decimal
def recv_size(sock, bufsize=0):
 hexstr = "0x" + recv_fixed_size(sock,8)
 size = int(hexstr, 16)
 return recv_fixed_size(sock, size, bufsize)

29 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

File Retrieval Routine

Dump socket output (sock.recv) to a local file
def recv_to_file(sock, filename, mode='w', bufsize=4096):
 f = open(filename, mode)
 while True:
 data = sock.recv(bufsize)
 if not data:
 f.close()
 break
 f.write(data)

 Retrieving a file trough a socket is very common, so we better have a

common function that does it effectively

 This is also a safe measure for draining the socket into a local file: we

are sucking all data from the socket until it has nothing else to receive

 However this is good only if socket closes connection after sending file

30 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

File Retrieval Routine

def recv_fixed_size_to_file(sock, size, file, mode="wb", bufsize=0):
 if bufsize == 0:
 bufsize = min(size, 4096)
 f = open(file, mode)
 curr_size = 0
 while curr_size < size:
 data = sock.recv(bufsize)
 if data == "":
 raise RuntimeError("socket connection broken")
 f.write(data)
 curr_size += len(data)
 f.close()

 For server socket that sends many files, the standard method is:

1. Send the file size to the client

2. Send the file stream to the client

 The next function retrieves a fixed size stream to a file:

31 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Send File Routine

def send_file(sock, file, mode="rb", bufsize=4096):
 f = open(file, mode) # open file for reading in binary mode
 while True:
 data = f.read(bufsize)
 if not data:
 f.close()
 break
 rcode = sock.sendall(data)
 if not rcode is None:
 print "Exceptional socket sendall return code:", rcode
 raise Exception("send error: data was not fully transmitted")

 Sending a file through a socket is also a very common routine, which

we have already encountered several times

 Here is a safe function for sending a local file from a local socket to a

remote host

32 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

socket_utils module

if you throw it to: “c:/workspace”, then:
import sys
sys.path.append("c:/workspace“)
from socket_utils import *

if you throw it to “c:\python27\lib, then it will work immediately:
from socket_utils import *

Not that this module also imports: socket, time, hashlib, os, threading

 All these new socket utilities are assembled in the in the socket_utils

module. It can be downloaded from:

 http://tinyurl.com/samyz/cliserv/lab/socket.zip

 You can download it and throw in your Python library, and then import

it to your Python programs (see below)

 You are encouraged to improve and add new utilities to this module!

 So it is expected to change a lot until we reach Projects 4 and 5, in

which we will make important use with this module! (stay tuned)

33 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

WWW Client Sockets (v2)

from socket_utils import *

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
google_server = ("www.google.com", 80)
sock.connect(google_server)
sock.send("GET / HTTP/1.0\r\n\r\n")
html_file = "c:/workspace/index.html"
recv_to_file(sock, html_file)
os.system("notepad.exe " + html_file)
#os.startfile(html_file)

 Here is version 2 of our www connection to Google web server

 This time we are using our recv_to_file utility function to drain the

socket to an html file

34 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

WWW Client Sockets (v3)

from socket_utils import *

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server = ("www.google.co.il", 80)
sock.connect(server)
sock.send("GET /search?q=python+socket+programming HTTP/1.0\r\n\r\n")
html_file = "c:/workspace/index.html"
recv_to_file(sock, html_file)
os.system("notepad.exe " + html_file)
os.startfile(html_file)

 In version 3 we present a more interesting GET request:

 Google search query

35 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

WWW Client Sockets (v4)

from socket_utils import *

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
html_file = "c:/workspace/index.html"

server = ("www.cs.uic.edu", 80)
sock.connect(server)
sock.send("GET /~jbell/CourseNotes/OperatingSystems/index.html HTTP/1.0\r\n\r\n")
recv_to_file(sock, html_file)
os.startfile(html_file)

 One more example with a deep path

36 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python File Server (v2)

import socket, sys

servsock = socket.socket()
servsock.bind(("localhost", 12345))
servsock.listen(20) # set maximum accept rate to 20 connections

id = 0
while True:
 newsock, address = servsock.accept()
 id += 1
 start = time.time()%1000
 file = newsock.recv(255) # receive file name: max 255 chars
 send_file(newsock, file)
 end = time.time()%1000
 print "Connection %d: File = %s, Time = %.2f-%.2f" % (id, file, start, end)
 newsock.close()

37 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Notes on socket send/recv

 When a recv() returns 0 bytes, it means the other side has closed

the connection (or is in the process of closing connection)

 You will not receive any more data on this connection! Ever!

 But you may be able to send data successfully

 Similarly: if a send() returns after handling 0 bytes, the connection

has been closed or broken

 Example: HTTP uses a socket for only one transfer:

 The client sends a request, then reads a reply. That’s it.

 The socket is discarded

 This means: a client can detect the end of the reply by receiving 0 bytes

 (which corresponds to the fourth type of message transfer)

38 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python File Client (v2)

To be run from the command line
from socket_utils import *
import sys

remote_file_name = sys.argv[1]
local_file_path = sys.argv[2]

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
file_server = ("localhost", 12345)
sock.connect(file_server)
sock.send(remote_file_name)
recv_to_file(sock, local_file_path, 'wb')
sock.close()

39 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Quality Checks

 Testing networking applications is a very critical and difficult domain

 Google invests a substantial amount of resources for testing and

validating its networking infrastructure and applications

 Examples: making sure that gmail message

 Arrive on time

 Are not lost

 Are not modified on their journey

 Backup and restore

 Performance under congested and stressful networking conditions

 To get an idea on this domain, we will write a Python program that

tests our file transfer server and client

40 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Quality Checks Plan

 Choose several files from different sizes for our Test Plan

 We already have the Oliver twist book and our huge db.csv database

 Write a function that uses the file server to transfer a given file

 Write a function which loops over the previous function a large number

of times (like: 20, 50, 100, and even 1000 times!)

 Our test program should check the following things:

 The remote file and the transferred file are identical on each iteration

 The transfer speed is reasonable and is uniform across all experiments

 CPU consumption is not too high

 memory usage is reasonable (no leaks or swamp)

 To be further discussed in class

41 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Project 4: BFTP

Braude File Transfer Protocol

 This is our next course project

 All 4 first versions of our small file server/client were have focused only

on one operation: GET file

 A normal File transfer service usually have more than this operation.

To list a few: GET, PUT, LIST, PWD, CD, DELETE, and more.

 These operations are discussed in the initial project draft. We will all

make efforts to define the final project goals in the next week or two

 Please visit the course web site and read more on project 4 and try to

help in defining the protocol and checking the common code

 To check the socket_utils code, try it on the previous small tests (1-4)

42 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Process and Threads Concepts

 A process (or job) is a program in execution

 A process includes:

1. Text (program code)

2. Data (constants and fixed tables)

3. Heap (dynamic memory)

4. Stack (for function calls and temporary variables)

5. Program counter (current instruction)

6. CPU registers

7. Open files table (including sockets)

 To better distinguish between a program and a
process, note that a single Word processor program
may have 10 different processes running
simultaneously

 Consider multiple users executing the same Internet
explorer (each has the 6 things above)

 Computer activity is the sum of all its processes

43 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Process States

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

44 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

CPU Process Scheduling

 Modern operating systems can run hundreds (or thousands) of

processes in parallel !

 Of course, at each moment, only a single process can control the

CPU, but the operating system is switching processes every 15

milliseconds (on average) so that at 1 minute, an operating system

can switch between 4000 different process!

 The replacement of a running process with a new process is

generated by an INTERRUPT

45 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

One Process, Many Threads!

TEXT (PROGRAM CODE)

DATA

HEAP (Dynamic Memory)

OPEN FILES TABLE

Program Counter

Stack

THREAD 1

Registers

Program Counter

Stack

THREAD 2

Registers

Program Counter

Stack

THREAD 3

Registers

Program Counter

Stack

THREAD 4

Registers

P
ro

c
e

s
s

 P
a

rt
s

46 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

THREADS

 A thread is a basic unit of CPU utilization consisting of

 Program counter

 Registers

 Stack

 Thread ID

 Every thread is running in the context of a parent process which have

 TEXT (Program Code)

 DATA (constants)

 HEAP (Dynamic Memory

 Open Files Table

 A process consists of multiple threads which share these 4 things

 This means that several threads can use and share a common

variable, a common open file, and even a common socket! In parallel

47 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

THREADS

 In modern operating systems, a process can be divided into several

tasks that operate in parallel

 These tasks can sometimes run independently of each other, and

sometimes with minimal interdependencies (or else it’s better to give

up threads!)

 This is particularly desirable if one of the tasks may block (and block

the entire process), and then allow the other tasks to proceed without

blocking

 Example: Microsoft Word process sometimes involves the following

activities within a single running process:

 A foreground thread processes user input (keystrokes)

 Second thread makes spelling and grammar checks

 Third thread loads images from the disk (or internet)

 Fourth thread performs incremental backup in the background

48 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

THREADS - Notes

 Threads are easier to create than processes since they do not require

a separate address space!

 Multithreading requires careful programming since threads share data

structures that should only be modified by one thread at a time!

 Unlike threads, processes do not share the same address space and

thus are truly independent of each other.

 Problem in one thread can cause the parent process to block or crash

(and thus kill all other threads!)

 Threads are considered lightweight because they use far less

resources than processes

 Threads, on the other hand, share the same address space, and

therefor are interdependent

 Therefore a lot of caution must be taken so that different threads don't

step on each other!

49 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python Threads: Hello 1

from threading import Thread
from time import strftime

class MyThread(Thread):
 def run(self):
 threadName = self.getName()
 timeNow = strftime("%X")
 print "%s says Hello World at time: %s" % (threadName, timeNow)

Openning 5 threads
for i in range(5):
 t = MyThread()
 t.start()

50 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python Threads: Hello 2
import os, time, random
from threading import Thread

def hello(tname):
 delay = 0.050 + 0.100 * random.random() # random value between 0.050 to 0.150 (seconds)
 time.sleep(delay)
 print "Delay =", delay
 print "Hello from thread %s" % (tname)

def run_threads():
 print "Process ID =", os.getpid()
 t1 = Thread(target=hello, args=('t1',))
 t2 = Thread(target=hello, args=('t2',))
 t3 = Thread(target=hello, args=('t3',))
 t4 = Thread(target=hello, args=('t4',))
 t5 = Thread(target=hello, args=('t5',))

 threads = [t1, t2, t3, t4, t5]

 for t in threads:
 print "Starting thread:", t
 t.start()

 for t in threads:
 t.join()

