
ג"תשע/אב/ז"כ

1

1 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 1

Client Server and

Parallel Programming

 31666
Spring 2013, Ort Braude College

Electrical Engineering Department

2 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Course Program

 Lecturer: Dr. Samy Zafrany

 Credits: 5.0

 Hours: 3 lecture, 2 laboratory

 Grade Composition:

 20% - mid-term exam

 30% - laboratory projects

 50% - final exam

 Prerequisites: 31616 (Programming)

ג"תשע/אב/ז"כ

2

3 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Course Web Site

tinyurl.com/samyz/cliserv/index.html

This is a temporary location until we move

To the college Moodle system

Slides and most figures and images are based

on the Slides of Tanenbaum Book:

Computer Networks, Fourth Edition,

Andrew S. Tanenbaum, Prentice Hall 4th

Edition, Teacher Complimentary Materials

4 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Course Description

 Client/server application architecture

 Interface, Protocols, Basic Networking Concepts (TCP/IP, UDP) and

basic networking tools

 Socket programming

 Internet, WWW, SQL, and client/server systems

 Multitasking, multithreading, and distributed programming

 Database systems, distributed systems, distributed programming

 Client technologies, languages and tools

 Server technologies, languages and tools

 Security and social issues of client/server systems.

http://tinyurl.com/samyz/cliserv/index.html
http://tinyurl.com/samyz/cliserv/index.html
http://tinyurl.com/samyz/cliserv/index.html
http://tinyurl.com/samyz/cliserv/index.html
http://tinyurl.com/samyz/cliserv/index.html

ג"תשע/אב/ז"כ

3

5 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Course Outline

 Client/Server systems overview: www client/server, email, ftp, File Server (NFS),

DBMS, SQL, RPC

 Networking concepts: protocols, TCP/IP, UDP, MIME, POP, SMTP, DNS, HTML,

HTTP, XML

 Networking concepts: OSI model

 Operating systems, processes, and threads Overview. Multithreading models.

Threading issues.

 Socket Programming. Synchronous vs. Asynchronous socket calls.

 Networking testing tools: ping, nslookup, ipconfig, traceroute, netstat

 Distributed system structures. Network Structure. Network Topologies.

Communication Structure. Communication Protocols.

 Client/Server system design: chat client/server, simple DBMS client/server, Poker

game client/server

 Client/Server system implementation: chat client/server, simple DBMS client/server,

Poker game client/sever

 Communication Security. Social issues. Cryptography. SSL.

6 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Lab Projects

 Multi processing and multithreading (parallel programming)

 File system search/indexing using single process, multiple

processes, and multithreading

 Client communication with server

 Multiple clients communicating with server (Chat server, simple

DBMS, Poker game server)

 RPC client/server

 Implement a simple distributed parallel algorithm

ג"תשע/אב/ז"כ

4

7 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Expected Learning Outcomes

 Students will get familiar with basic networking concepts, the basic

structure and organization of networking

 Common types of networking paradigms, and common Internet

applications and protocols

 Particular emphasis will be put on the prevalent client/server model,

and its associated parallel programming computing methods

 Multitasking, multithreading, and distributed programming

 Ability to apply solid engineering principles and methods in building

network-aware applications.

8 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 8

Bibliography
 Silberschatz and Galvin. Operating Systems Concepts. 8th edition,

2008, John Wiley & Sons, Inc.

 Andrwes S. Tanenbaum. Computer Networks, 5th Edition, 2010,

Prentice Hall.

 W. Richard Stevens, Bill Fenner, Andrew Rudoff. UNIX network

programming, 3rd edition, 2003, Prentice Hall.

 Allen B. Downey. Think Python, O’Reilly 2012,

http://www.greenteapress.com/thinkpython

 Mark Pilgrim. Dive into Python, Apress 2004,

http://www.diveintopython.net

 John Goerzen, Brandon Rhodes. Foundations of Python Network

Programming. 2nd Edition, 2010, Apress.

 www.python.org

http://www.greenteapress.com/thinkpython
http://www.diveintopython.net/
http://www.python.org/

ג"תשע/אב/ז"כ

5

9 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Software

 All needed software should be downloaded from

https://dl.dropbox.com/u/60773652/PYTHON/index.html

 Into a personal flash drive (diskonkey)

 at leas 2GB drive is needed

 All software can be executed from the flash drive on any standard

Windows PC

 So you can do all your coding work at home and everywhere you

have an access to a windows PC

 We may however need a session or two in the College Linux labs

10 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Computer Networks

 The old model of a single computer serving all of the organization’s

computational needs has been replaced by one in which a large number of

separate but interconnected computers do the job.

 ‘‘computer network’’ is a collection of autonomous computing devices

interconnected by a single technology

 Connection is achieved by:

 Copper wires (Ethernet cables)

 Fiber optics

 Microwaves

 Infrared,

 Communication satellites

 Computing devices: personal computers, tablets, smart phones, routers,

blade servers, car controllers, televisions, refrigerators, cameras, ewatches,

hard drive controllers, robot systems (unmanned aerial vehicle), etc.

https://dl.dropbox.com/u/60773652/PYTHON/index.html
https://dl.dropbox.com/u/60773652/PYTHON/index.html
https://dl.dropbox.com/u/60773652/PYTHON/index.html

ג"תשע/אב/ז"כ

6

11 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Goals of Networking

 Resource and load sharing and balancing
 Programs do not need to run on a single machine

 Files can span several disks (even on different continents – Hadoop)

 Reduced cost

 Several machines can share printers, tape drives, etc.

 Reliability & Redundancy:
 If a machine goes down, another takes over
 If a file or disk is damaged, data can be recovered

 Social Connectivity: mail, chat, messages, video, multimedia business,

games, recreation (YouTube, Facebook, Twitter, Steam)

 Business applications: DB sharing, e-commerce, m-commerce (Amazon,

eBay), Banking, Stock market, Sensor networks

 Mobile applications: tablets, smart phones, VOIP

 Scientific applications
 knowledge bases

 distributed computing

 shared information systems, telelearning (education)

12 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Computer Network & Distributed System

 In a distributed system, a collection of independent computers

appears to its users as a single coherent system.

 In a computer network, users are exposed to the actual machines

 If the machines have different hardware and different operating

systems, that is fully visible to the users

 If a user wants to run a program on a remote machine, he has to log

onto that machine and run it there.

 In effect, a distributed system is a software system built on top of a

network

 A well-known example of a distributed system is the World Wide

Web. It runs on top of the Internet and presents a model in which

everything looks like a document (Web page).

ג"תשע/אב/ז"כ

7

13 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Client-Server System

 network architecture in which two computers are connected in such a way

that one computer (the client) sends service requests to another computer

(the server).

 Examples: WWW, Email, Waze

 Usually, the server is a powerful computer to which many less powerful

personal computers or workstations (clients) are connected. The clients run

programs and access data that are stored on the server.

 Usually on distant locations but can be also on the same machine

14 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Client Server Data Flow

The client-server model involves requests and replies.

ג"תשע/אב/ז"כ

8

15 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Peer-to-Peer System

 In peer-to-peer system there are no fixed clients and servers

 Any node can be sometimes a client and sometimes a server

 Examples: Napster, Kazaa, Emule, BitTorrent (content exchange)

 DEC president, Ken Olsen, 1977: ‘‘There is no reason for any individual

to have a computer in his home.’’

 Digital Equipment Corporation no longer exists

16 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Some forms of e-commerce

ג"תשע/אב/ז"כ

9

17 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Network Hardware

Personal Area Networks (PAN)

 Local Area Networks (LAN)

Metropolitan Area Networks (MAN)

Wide Area Networks (WAN)

Wireless Networks (LAN/WiFi)

Home Networks (LAN/WiFi)

 Internetworks

18 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Networks Classification

 Network are usually classified according to transmission

technology and Scale

 there are two types of transmission technology that are

in widespread use:

 broadcast links

 point-to-point links.

 Broadcast network: the communication channel is

shared by all the machines on the network; packets sent

by any machine are received by all the others

 Point-to-point network: shortest routes between two

peers are used for communications

ג"תשע/אב/ז"כ

10

19 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Interconnected Processors by Scale

20 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Personal Area Network (PAN)

(a) Wireless keyboard/mouse/headset

(b) Wireless Printers

(c) External disks

(a) Wired connection

(b) Bluetooth configuration

(c) Wireless connection

ג"תשע/אב/ז"כ

11

21 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Local Area Network (LAN)

Two broadcast networks

(a) Bus

(b) Ring

22 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Wireless and wired LANs

Wireless LAN: IEEE 802.11 (WiFi)

(a) 1-100 Mbps, 10 Gbps

(b) Coper wires, optical fibers

 - faster than wireless LAN

(c) 802.3 (Ethernet) most popular LAN

ג"תשע/אב/ז"כ

12

23 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Flying LAN

(a) Individual mobile computers

(b) Tablets, smartphones

(c) Other small factor devices

24 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Metropolitan Area Networks (MAN)

(a) A metropolitan area network based on cable TV

(b) New MAN: IEEE 802.16 (WiMax)

 - Worldwide Interoperability for Microwave Access

(c) Related standards: GSM, 3G (3rd generation of mobile technology)

ג"תשע/אב/ז"כ

13

25 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Wide Area Networks (WAN)

WAN that connects three branch offices in Australia

Transmission lines: copper, optical fiber, radio links

Switching elements: computers that connect two or more

transmission lines (routers) - internetworks

26 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Wide Area Networks (WAN)

Relation between hosts on LANs and the subnet.

ג"תשע/אב/ז"כ

14

27 Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Wide Area Networks (2)

A stream of packets from sender to receiver.

28 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Network Software

 Communication Protocol Hierarchies

 Design Issues for the Layers (OSI Model)

 Connection-Oriented and Connectionless Services

 Service Primitives

 The Relationship of Services to Protocols

ג"תשע/אב/ז"כ

15

29 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Hierarchies

 “Abstraction—the hiding of details behind a well-defined interface—is the

fundamental tool used by system designers to manage complexity”

Larry L. Peterson and Bruce S. Davie, Computer Networks

 To reduce design complexity networks are organized as a stack of layers

 The purpose of each layer is to offer certain services to the higher layers

while shielding those layers from the details of how the offered services are

actually implemented

 AKA: information hiding, abstract data types, data encapsulation, and object-

oriented programming

 Conversation between layer n on one machine with layer n on another

machine: the rules and conventions used in this conversation are collectively

known as the layer n protocol

30 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Layers, protocols, and interfaces

Real data is transfered only at the physical layer!

All other dotted lines are virtual!

ג"תשע/אב/ז"כ

16

31 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Network Architecture

 A set of layers and protocols is called a network architecture

 Neither the details of the implementation nor the specification of the

interfaces is part of the architecture

 A list of the protocols used by a certain system, one protocol per layer, is

called a protocol stack

 Typical flow:

 A message, M, is produced by an application process running in layer 5 and

given to layer 4 for transmission

 Layer 4 puts a header in front of the message to identify the message and

passes the result to layer 3

 The header includes control information, such as address/port, to allow layer 4

on the destination machine to deliver the message

 Other examples of control information used in some layers are sequence

numbers, sizes, and times

 layer 3 must break up the incoming messages into smaller units, packets,

prepending a layer 3 header to each packet

32 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Communication Flow

 Layer 3 decides which lines to use and passes the packets to layer 2

 Layer 2 adds to each piece not only a header but also a trailer, and gives the resulting unit to

layer 1 for physical transmission

 At the receiving machine the message moves upward, from layer to layer, with headers being

stripped off as it progresses

ג"תשע/אב/ז"כ

17

33 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Communication Protocol
 Definition 1: A protocol is an agreement between the communicating parties

on how communication is to proceed

 Definition 2: A protocol is a set of communication "rules" between two

processes.

 Example: A "grades database query" protocol

 (We may make a small project out of it later …)

Client: HELLO Server: READY

Client: NAME 051883261\n Server: DAN HACKER\n

Client: GRADE MATH\n Server: 87\n

Client: GRADE HISTORY\n Server: 93\n

Client: END Server: BYE

34 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

OSI Model

 Open Systems Interconnection (OSI)

 Proposed by the International Standards Organization (ISO)

 The OSI model has seven layers

http://www.google.co.il/url?sa=i&rct=j&q=osi layers&source=images&cd=&cad=rja&docid=bUi84FniHG-VJM&tbnid=SlWdpXG4MsKViM:&ved=0CAUQjRw&url=http://aninditablog.wordpress.com/2012/04/19/osi-layer-model/&ei=Ki4UUY34OZKLhQfG1oCYDQ&bvm=bv.42080656,d.ZG4&psig=AFQjCNGHTT3-iwjAEe6PxnA5ZgM6mfxfbQ&ust=1360363408136181
http://www.google.co.il/url?sa=i&rct=j&q=networks are organized as a stack of layers&source=images&cd=&cad=rja&docid=BdhtqyJqJtVtzM&tbnid=Ju2lsh36mQIGpM:&ved=0CAUQjRw&url=http://support.novell.com/techcenter/articles/ana19921103.html&ei=X2cZUbCwMoeZhQeZooGQDw&bvm=bv.42080656,d.ZG4&psig=AFQjCNEzttEA-OFZLb1XZDZ95eJ35WZQIg&ust=1360705538628295

ג"תשע/אב/ז"כ

18

35 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Application Layer

 The closest layer to the user: Outlook, Explorer, Firefox, Skype (HTTP, POP,

SMTP, FTP, TELNET).

 In this layer that a user interacts with the software application that does data

transfer

 The main tasks:

 Identify/authenticate the user who wants to communicate

 determine whether the data and networks sources are available

 synchronize communication between the two nodes

36 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Presentation Layer

 Convert the data into a format that could be easily recognized by the

application layers of other end users.

 For example: translation between ASCII and EBCDIC machines as well as

between different floating point and binary formats. Integer size (16,32, or 64

bit?). Floating point representations.

 Compression/decompression, conversion, encryption/decryption, coding,

decoding, etc.

 Converts the data obtained from the application layer into a format that can

be easily identified by other network layers.

ג"תשע/אב/ז"כ

19

37 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Session Layer

 In practice, this layer is often not used or services within this layer are

sometimes incorporated into the transport layer

 Establishing, maintaining and terminating the connection between two end

nodes (not used in TCP/IP)

 Controls the communication between the source user and the destination

user and also decides the time of communication

 It determines one-way or two-way communications and manages the dialog

between both parties; for example, making sure that the previous request

has been fulfilled before the next one is sent

 Any error report related to application layer, presentation layer and session

layer, are provided by this layer

38 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Transport Layer

 Responsible for delivering the data or the messages between the two nodes

 Divide the data in packets at the sender side

 Re-assemble packets at the receiver side

 Third task: error free data transmission

 Uses checksums for error correction or rejection

 Drop corrupt packets and requests retransmission

 Fourth task: guarantee data integrity

 Make sure all packets have arrived

 UDP, SPX, TCP are some of the protocols that operate on this layer with

one exception: UDP is unreliable

ג"תשע/אב/ז"כ

20

39 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Network Layer

 Provide switching technologies and routing technologies:

It is the network layer's job to figure out the network topology, handle routing

and to prepare data for transmission

 Establishes the route between the sending and receiving nodes for data

transmission (also known as virtual circuits)

 Encapsulation of transport data into network layer protocol data units

 Also responsible for handling errors, packet sequencing, controlling network

congestion and addressing

 In short: this layer is responsible for the setting up the required network for

transferring data from one node to other.

40 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Data Link Layer

 Encoding and decoding of data frames into bits (as the physical layer may

use waves or other type of media). At the receiving side: Collects a stream

of bits into a larger aggregate called a frame.

 Segmentation of upper layer datagrams (packets) into frames in sizes that

can be handled by the communications hardware

 Takes care of any errors in the physical layer (electricity presence, voltage

drop, no power, connection, etc.)

 Provides reliable transit of the data through a physical network

 Synchronization of various physical devices that will transmit the data

 It makes sure that the frames are transferred in correct order and asks for

retransmission in case of error

 The frame formatting issues such as stop and start bits, bit order, parity and

other functions are handled here. Management of big-endian/little-endian

issues are also managed at this layer.

 Usually implemented on Hardware (network interface card):

ג"תשע/אב/ז"כ

21

41 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Physical Layer

 Deals with the physical components of a network

 Activation, maintenance and deactivation of various physical links that act in

data transmission

 Electrical signals, voltage levels, cables, data transmission rates, etc., are

some of the major elements defined by the physical layer

 It is also responsible for passing and receiving bytes from the physically

connected medium

 Implemented on hardware (network interface card)

42 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Information Flow

The peer processes in layer 4 (for example) conceptually think of their

communication as being ‘‘horizontal,’’ using the layer 4 protocol

Each one is likely to have procedures called something like SendToOtherSide and GetFrom-

OtherSide, even though these procedures actually communicate with lower layers

across the 3/4 interface, and not with the other side.

ג"תשע/אב/ז"כ

22

43 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Design Issues - Accuracy

 Packet traveling through the network: there is a chance that some bits will be

flipped, or even get lost, or new ones will be added:

 fluke electrical noise

 random wireless signals

 hardware flaws

 software bugs (and so on …)

 Is it possible to detect and even fix these errors?

 Must separate between two targets:

 Error Detection

 Easy mechanisms for detecting errors (with very high probability)

 Error Correction

 This is possible but very costly (space, time, resources)

44 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Design Issues - Reliability

 Finding a working path through a network:

 Usually there are multiple paths between a source and

destination

 In a large network, there may be broken links, hosts, and routers

 If the network is down in Germany: packets sent from London to

Rome via Germany will not get through, but packets from London to

Rome via Paris may get through … ?

 A network should automatically detect the problem and make this

decision. This topic is called routing. How this is done? We’ll see

later …

 Not all communication channels preserve the order of packets sent

on them, and packets can also get completely lost

ג"תשע/אב/ז"כ

23

45 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Design Issues – Flow Control

 Congestion: how to keep a fast sender from swamping a slow receiver?

 Overloading of the network is called congestion: too many computers want

to send too much traffic, and the network cannot deliver it all

 One strategy is for each computer to reduce its demand when it experiences

congestion

 Starvation: fast receivers against slow senders (fast clients vs. slow server)

 Quality of service is the name given to mechanisms that reconcile these

competing demands

 Applications: video streaming, VOIP, media recorders (“buffer overrun”)

 Balancing senders and receivers speeds in such cases is very crucial

46 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Design Issues – Security

 Network must be secured by defending it against different kinds of

threats:

 Confidentiality: prevent unauthorized access to information

(snooping)

 Authentication: prevent someone from impersonating someone

else (Phishing)

 Integrity: prevent surreptitious changes to messages:

 ‘‘debit my account $10’’  ‘‘debit my account $1000’’

 Solution designs are heavily based on cryptography

ג"תשע/אב/ז"כ

24

47 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Connection-Oriented and Connectionless

Services

48 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Connection-Oriented

 Connection is established, the sender, receiver, and subnet conduct a

negotiation about the parameters to be used, such as

 Maximum message size

 Quality of service required, and other issues

 Typically, one side makes a proposal and the other side can accept it, reject

it, or make a counter proposal.

 A circuit is another name for a connection with associated resources (after

the telephone model …)

 Reliability: do not lose data – e.g., the receiver acknowledge the receipt of

each message

 so the sender is sure that it arrived

 TCP – Transmission Control Protocol is connection oriented

 Text documents, email, image attachments

ג"תשע/אב/ז"כ

25

49 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Connectionless Service

 In contrast to connection-oriented service, connectionless service is

modeled after the postal system

 Each message (letter/package) carries the full destination address

and each one is routed through the intermediate nodes inside the

system independent of all the subsequent messages

 UDP – User Datagram Protocol – unreliable

 Unreliable (meaning not acknowledged) connectionless service is

often called datagram service, in analogy with telegram (service,

which also does not return an acknowledgement to the sender)

 Video streaming, Video conference, VOIP, Digital TV transmission

(Idan+)

50 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Co-existence of both kinds

 reliable communication may not be available in a given layer

 For example, Ethernet does not provide reliable communication.

Packets can occasionally be damaged in transit

 It is up to higher protocol levels to recover from this problem. In

particular, many reliable services are built on top of an unreliable

datagram service. Second,

 Both reliable and unreliable communication usually coexist.

ג"תשע/אב/ז"כ

26

51 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Connection-oriented Service Primitives

 Minimal example of service primitives that provide a reliable byte stream

 A service is formally specified by a set of primitives (operations) available to user processes

to access the service

 These primitives tell the service to perform some action or report on an action taken by a

peer entity (usually as operating system calls)

 Modeled after the Berkeley socket interface

52 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Service Primitives (2)

 LISTEN is usually implemented by a block system call - the server process

is blocked until a request for connection appears

 CONNECT is usually implemented by a connection request to a server

 The CONNECT call may need to specify the server’s address

 The operating system then typically sends a packet to the peer asking it

to connect

 The client process is suspended until there is a response

 When the packet arrives at the server, the operating system sees that the

packet is requesting a connection

 It checks to see if there is a listener

 If so it unblocks the listener (wake-up call)

 The server process may accept the connection with the ACCEPT call

 This sends a response back to the client process to accept the connection

ג"תשע/אב/ז"כ

27

53 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Service Primitives (3)

 Next step: RECEIVE

 The server prepares to accept the first client request

 The RECEIVE call blocks the server

 Then the client executes SEND to transmit its request (data or action)

followed by the execution of RECEIVE by the server (and then blocks)

 The arrival of the request packet at the server machine unblocks the server

so it can handle the request

 After it has done the work, the server uses SEND to return the answer to the

client

 The arrival of this packet unblocks the client, which can now inspect the

answer. If the client has additional requests, it can proceed immediately.

 When the client is done, it executes DISCONNECT to terminate the

connection. Usually, a DISCONNECT is a blocking call, suspending the

client and sending a packet to the server saying that the connection is no

longer needed

54 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Service Primitives (4)

 When the server gets the client disconnect packet, it also issues a server

DISCONNECT of its own, acknowledging the client and releasing the

connection

 When the server’s packet gets back to the client machine, the client process

is released and the connection is broken

 In a nutshell, this is how connection-oriented communication works:

ג"תשע/אב/ז"כ

28

55 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

The TCP/IP Reference Model

 TCP is Transmission Control Protocol.

 IP is Internet Protocol.

 Only 4 layers:

1 Application Layer

2 Transport Layer

3 Internet Layer

4 Link Layer (network)

56 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

The Tanenbaum Reference Model

 The model used in Tanenbaum book adds a

Physical layer (page 48). Also used by others.

 But we will stick to the official TCP/IP model since

the physical layer is out of the course scope

1 Application Layer

2 Transport Layer

3 Internet Layer

4 Link Layer (network)

5 Physical Layer

ג"תשע/אב/ז"כ

29

57 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Layer 4: The Application Layer

 Higher-level protocols such as: TELNET, FTP,

SMTP, DNS, HTTP, POP2, POP3.

 These are the protocols that are used by

applications like MS internet explorer, Google

Chrome, MS outlook, Skype, Waze, etc.

 This layer is essentially the same as the OSI

Model layer 7

58 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Layer 3: The Transport Layer

(TCP / UDP)

 This layer implements layers 4, 5, and 6 of the OSI model

(session, presentation, and transport)

 Handles full messages (long documents, multimedia, etc.)

 Nevertheless, in many cases OSI layer 6 makes sense

(encryption, compression, data representation) and used

in analysis

 The most used protocols are: TCP, UDP (but there are

additional 15 new ones)

 Usually implemented at the operating system kernel (Unix

and Windows) (why?)

ג"תשע/אב/ז"כ

30

59 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Layer 2: The Internet Layer

(IP)

 Connectionless internetwork layer (IP Protocol)

 Packet-switching: blocks of data constrained to a fixed size

 permitting hosts to send packets into any network and

have them travel independently to the destination,

potentially on a different network.

 Implemented at the operating system, at routers hardware,

gateways, bridges, etc.

 A computer can act sometimes as a router or a gateway,

so the operating system includes special modules to

handle network operations

 Major interface: SEND_IP_PACKET, RECEIVE_IP_PACKET

60 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Layer 1: Link/network Layer

(Ethernet/wireless)

 Almost everything below the internet layer is not defined in

the TCP/IP reference model

 The network layer essentially performs the functions of the

OSI physical and data link layers

 Usually implemented by network device drivers: Ethernet,

Ring or Star card drivers (with the help of the device

drivers of course)

ג"תשע/אב/ז"כ

31

61 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

OSI and TCP/IP Reference Models

OSI TCP/IP

7 Application Application

6 Presentation

Session

Transport

Transport

5

4

3 Network Internet

2 Link Link/Network

1 Physical

62 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP/IP Family

 TCP/IP refers to an entire communication protocol family based on the

 Transmission Control Protocol (TCP)

 The Internet Protocol (IP)

 It defines protocols at the network layer and the transport layer

 The TCP/IP suite has six basic elements:

 Applications

 The Transmission Control Protocol (TCP)

 The User Datagram Protocol (UDP)

 The Internet Protocol (IP)

 Auxiliary protocols like the Internet Control, Message Protocol

(ICMP), and the Address Resolution Protocol (ARP).

ג"תשע/אב/ז"כ

32

63 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP/IP Family: IP

 IP major role is to route packets from a process in one machine to

another process at another machine (possibly the same machine)

 For that IP uses an IP address and a Port number

 The port number determines the specific process to which the

packet belongs

 When an application sends a data packet to another machine

 IP determines to which network the packet should go

 if necessary, IP routes the packet from one network to another

 IP figures out where to send a packet based on the IP address of the

recipient

 At some hops, IP may fragment a large packet to smaller packets

(“fragments”) if that network cannot handle large packets (link with a

smaller MTU - maximum transmission unit)

64 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Internet: Collection of Subnetworks

ג"תשע/אב/ז"כ

33

65 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

The IP Protocol

 Packet delivery service (host-to-host).

 IP provides connectionless, unreliable delivery of IP

datagrams.

 Connectionless: each datagram is independent of all

others.

 Unreliable: there is no guarantee that datagrams are

delivered correctly or at all.

66 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IP Addressing (v4)

Every host on the internet is assigned a unique IP
address which consists of 32 bits.

Example:
 |------- 32 bits -------|
 address = 11000111110010111001100000001010

The IP address consists of two parts: Network ID + Host ID

 1-8 9-16 17-24 25-32

Class A: 0nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh 0-127
Class B: 10nnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh 128-191
Class C: 110nnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh 192-223
Class D: 1110mmmm.mmmmmmmm.mmmmmmmm.mmmmmmmm 224-239
Class E: 11110rrr.rrrrrrrr.rrrrrrrr.rrrrrrrr 240-247

n = network bit
h = host bit
m = multicast
r = reserved for future use

ג"תשע/אב/ז"כ

34

67 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IP Addressing (v4)

Example:
 |------- 32 bits -------|
 address = 11000111110010111001100000001010

Every IP address belongs to a network class and consists
of two parts:
 [Network ID] + [Host ID]

 |<--------- 24 bit -------->|<- 8 bit ->|
 |<--------- Network ID -------->|<-Host ID->|

 11000111110010111001100000001010
Subnet mask:

 11111111111111111111111111100001010
 255.255.255.0

68 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IP Addressing (v4)

The algorithm to determine the address class is as follows:

Class A: 0nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh 0-127
Class B: 10nnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh 128-191
Class C: 110nnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh 192-223
Class D: 1110mmmm.mmmmmmmm.mmmmmmmm.mmmmmmmm 224-239
Class E: 11110rrr.rrrrrrrr.rrrrrrrr.rrrrrrrr 240-247

Class A: 0.0.0.0 -- 127.255.255.255 127 Networks of size=16M
Class B: 128.0.0.0 -- 191.255.255.255 16K Networks of size=64K
Class C: 192.0.0.0 -- 223.255.255.255 2M Networks of size=256
Class D: 224.0.0.0 -- 239.255.255.255
Class E: 240.0.0.0 -- 247.255.255.255 Reserved

ג"תשע/אב/ז"כ

35

69 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IP Addressing (v4)

 A Network ID is assigned to an organization by a global authority

(ICANN - Internet Corporation for Assigned Names and Numbers)

 Host IDs are assigned locally by a system administrator or

automatically by a DHCP server

 Both the Network ID and the Host ID are used for routing

 Very few organizations are assigned Class A addresses (USA

military, government, Boing, large banks, ...)

 But they do not use all possible host ids

 Many universities and companies were assigned class B addresses,

but most of them do not use more than 1000 or 2000 host ids (out of

the 64K possible host ids).

70 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IP Addresses

An IP address is assigned per network interface,

not host!

So a host that belongs to two networks must

have two network interfaces and thus two IP

addresses!

ג"תשע/אב/ז"כ

36

71 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

EXAMPLE

 The IP number of Netanya College Linux mail server,

moon.netanya.ac.il is a 32 bits binary integer:

 11000111110010111001100000001010
 It is better viewed 4 bytes:

 11000111.11001011.10011000.00001010
 Even better as: 199.203.152.6

 Since it starts in "110" it is a class C address, and therefore its

network mask is: 11111111.11111111.11111111.00000000

 The network number is 199.203.152.0.

 Broadcast address is 199.203.152.255.

 Broadcast mask is 255.255.255.255.

72 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

The IP Datagram Structure

 Header length is 20 bytes minimum and 60 bytes maximum

 Packet size can range from 40 bytes to 64K bytes depending on

networking software and networking hardware

 The data part is usually a small fragment of the total message which the

TCP (or UDP) protocol is trying to transmit

 TCP and UDP are the drivers of the IP protocol

DATA

HEADER

ג"תשע/אב/ז"כ

37

73 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

The IP Datagram Header (v4)

 Has a 20 bytes fixed part and a variable length optional part

 Version – IP Protocol Version (v4, v5, v6)

 IHL – (4 bits) The number of 32-bit words in the header (min=5W,

max=15W). That is, the header can be at most 60 bytes!

 Total Length - total length of the datagram in bytes

 size of the data = total length - header length"

74 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Type of service
(also called: Differentiated Services)

 Consists of 6 bits:

 1000 - minimize delay

 0100 - maximize throughput

 0010 - maximize reliability

 0001 - minimize monetary cost

 The other two bits used to record congestion history but now used for VOIP

 This is a "hint" to the physical layer to which path to use

 Not supported in most implementations. Some implementations have extra fields

in the routing table to indicate delay, throughput, reliability, and monetary cost.

ג"תשע/אב/ז"כ

38

75 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Identification

 Uniquely identifies the datagram

 Usually incremented by 1 each time a new datagram is sent

 Puts a max limit on packet sequence: 2^16 * (packet_length) ~ 4G

 All fragments of a datagram contain the same identification value

 This allows the destination host to determine which fragment belongs to which

datagram

76 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

FLAGS

 Used for fragmentation

 DF means “do not fragment”

 It is a request to routers not to fragment the datagram since the

destination is incapable of putting the pieces back together

 Can be use for MTU detection

 MF means “more fragments to follow”

 All fragments except the last one have this bit set!

 It is needed to know if all fragments of a datagram have arrived

 The bit to the left of DF is still unused … (electrical waste …)

 Required to be 0

ג"תשע/אב/ז"כ

39

77 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Fragment Offset

 Initial state: fragment offset=0, MF=0

 A router may divide a packet to small fragments, if next hop MTU is small

 Each fragmented packet will have to change these fields:

 The total length field = fragment size

 The more fragments (MF) flag is set for all fragments except the last one

 The fragment offset field is set to the offset of the fragment in the original

data payload (measured in units of eight-byte blocks)

 The header checksum field is re-calculated

 fragment offset = number of eight-byte blocks relative to the start of the original

data payload

 Maximum fragment offset = (213 – 1) × 8 = 65,528 bytes

78 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Fragment Offset

Data = 4000 bytes
MF = 0
Fragment offset = 0

Data = 1000 bytes
MF = 1
Fragment offset = 0

Data = 1000 bytes
MF = 1
Fragment offset = 125

Data = 1000 bytes
MF = 1
Fragment offset = 250

Data = 1000 bytes
MF = 0
Fragment offset = 375

Data = 504 bytes
MF = 1
Fragment offset = 125

Data = 496 bytes
MF = 1
Fragment offset = 187

P

P1 P2 P3 P4

P2a P2b

Packet P has reached a router at
Albania and got fragmented to 4
Fragments: P1, P2, P3, P4
Packet P2 has reached a router at
Micronesia and got fragmented
To: P2a, P2b

ג"תשע/אב/ז"כ

40

79 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Time to Live

&

Protocol

 Upper limit of routers to pass

 Usually set to 32 or 64

 Decremented by each router that processes the packet

 Router discards the datagram when TTL = 0

Protocol

 Tells IP where to send the datagram up to

 6 means TCP

 17 means UDP

80 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Header checksum

 Only covers the header, not the data!

 How the checksum is computed?

 Put a 0 in the checksum field

 Add each 16-bit value together

 Add in any carry

 Inverse the bits and put that in the checksum field

 To check the checksum:

 Add each 16-bit value together (including the checksum)

 Add in carry

 Inverse the bits

 The result must be 0

 The ttl field changes at each hop so this needs to be

recomputed on each hop

 Probability for error?

ג"תשע/אב/ז"כ

41

81 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Example of IP Header

 What is IP Version? IHL? Type of Service

Start Python console and run:

 >>> bin(0x45) = 0100,0101
 >>> bin(0x6c) = 0110,1100
 >>> bin(0x92) = 1001,0010
 >>> bin(0xcc) = 1100,1100

 Convert binary to decimal:
 45: Version = v4
 IHL = 5
 00: Type of Service = 0000
 00 6c: Total Length = 108
 92 cc: Identification = 1001001011001100
 92 cc: Checksum = 0x00
 ...

Note: When we build the IP header

We start with checksum=0x00 (RED)

And then calculate the checksum and

Write it back in that place

45 00 00 6c
92 cc 00 00
38 06 00 00
92 95 ba 14
a9 7c 15 95

IP HEADER

82 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Checksum Calculation

45 00 00 6c
92 cc 00 00
38 06 00 00
92 95 ba 14
a9 7c 15 95

IP HEADER first add all 16-bit values together,
adding in the carry each time:
 4500
 + 006c

 456c
 + 92cc

 d838
 + 0000

 d838
 + 3806

 1103e  We have a carry here !
 103e Remove the leading 1 and add back
 + 1

 103f

ג"תשע/אב/ז"כ

42

83 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Checksum Calculation

45 00 00 6c
92 cc 00 00
38 06 00 00
92 95 ba 14
a9 7c 15 95

IP HEADER 103f
 + 0000

 103f
 + 9295

 a2d4
 + ba14

 15ce8  Again we have a carry here !
 5ce9  Remove the leading 1 and add back
 + a97c

 10665  Again we have a carry here !
 0666  Remove the leading 1 and add back
 + 1595

 1bfb  Now we have to inverse the bits:
 1bfb = 0001 1011 1111 1011
 e404 = 1110 0100 0000 0100
 e404  This is the Checksum !

45 00 00 6c
92 cc 00 00
38 06 e4 04
92 95 ba 14
a9 7c 15 95

IP HEADER

84 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Checksum Validation

45 00 00 6c
92 cc 00 00
38 06 00 00
92 95 ba 14
a9 7c 15 95

IP HEADER

45 00 00 6c
92 cc 00 00
38 06 e4 04
92 95 ba 14
a9 7c 15 95

IP HEADER

• The receiver must validate the checksum
• It uses exactly the same algorithm, but this time

it starts with “e404” and must end with “0000”
• If the computation does not end with “0000”, the

receiver does not accept the packet

ג"תשע/אב/ז"כ

43

85 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Options

 Each option consists of 4 bytes

 The first byte is the option control block

 Copy flag: if 1, then copy option to fragments

 Option classes are

 0 - control

 1 - reserved

 2 - debugging and measurement

 3 – reserved

 The second byte designates the size of the entire option in bytes (including the

control fields) and the other bytes are the option data.

 A padding to fill out the 32 bit words may be needed after all options

 There is room for at most 40 bytes for options (IP header max words = 15 words)

0 1 2 3 4 5 6 7

copy
flag

option class option number

86 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Our First Project !
Design a Python class IpDatagram with the following Interface:

hexstr ="4500006c92cc00003806e4049295ba14a97c1595217a6f2c"

Class constructor
p = IpDatagram(hexstr)

Class members
p.version = 4
p.ihl = 5
p.length = 40 (bytes)

Class methods
p.source() = 192.68.25.7
p.destination() = 157.29.41.2
p.protocol() = 17
p.ttl() = 32
p.header() = The hex string of header part
p.data() = the hex string of the data part
p.checksum() = 0xe404
p.option(n) = Hex string of option n
>>>>> MORE TO COME SOON ... (at the course web site)

ג"תשע/אב/ז"כ

44

87 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP = Transport Control Protocol

 A reliable end-to-end byte stream over an unreliable internetwork

 Independent of network architecture, topology, speed

 Robust in the face of many kinds of failures

 Defined in RFC's 793, 1122, 1323

 A machine that supports TCP must have a single "TCP entity" as

part of the operating system on top of the IP layer

 TCP sometimes mean a protocol, and sometimes it means a running

computer process (operating system service)

 A bidirectional Protocol!

 The peers (sender and receiver) exchange data in the same

TCP segment format in both directions

88 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP Connections

 Two machines establish a TCP connection by creating (or using)

connection end-points that are called sockets

 A socket is fully identified by network IP and a Port number

 But it has more structure and operations

 Port numbers are assigned by the OS as 16-bit number

 Each machine can have up to 65535 (2**16-1) open ports

 So it is possible to have many connections between two machines

(how many in principle?)

 One port can be involved in many connections

 with different ports on the other host

 with the same port on different hosts

 Several browsers on the same host connected to ynet http server

ג"תשע/אב/ז"כ

45

89 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP Segments (1)

 TCP receives data from the Application layer (explorer, gmail, etc.)

 It may send it immediately or buffer it until it collects a large amount

to send at once

 If urgent, it is possible to force TCP to flush its buffers

 Socket flush method (sender side)

 special bit in the TCP packet (receiver side)

 TCP breaks the data into segments (TCP packets)

 Each segment is shipped separately from the others

 may even take a different route than others

 may arrive to their destination out of order

 some of them may be lost

 It's up to the TCP entity at the other end to reassemble, report

missing segments, etc, and deliver the data to the receiving process.

90 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP Segments (2)

 TCP breaks the data into segments (“TCP packets”)

 Each segment is shipped separately from the others

 Each segment may take a different route than the others

 Segments may arrive to their destination out of order

 Some segments may get lost and not reach their destination

 It is up to the TCP entity at the other end to

 Acknowledge received segments

 Ignore corrupt segments (no ack is required)

 Reassemble segments to full message

 Deliver the data to the receiving process.

ג"תשע/אב/ז"כ

46

91 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP Connection Control
 After TCP sends a segment it maintains a timer for receipt of an

acknowledgment from the other end

 Every received segment is acknowledged

 Timeout/retransmission is adaptive

 Checksum on TCP pseudo-header

 A bad segment is discarded without a NAK

 Duplicate segments are discarded by the receiving TCP

 IP may deliver duplicate datagrams

 Sender times out and retransmits (if no ack. received)

 Flow control (sliding windows algorithm) Ensures that a fast sender

does not swamp a slow receiver

92 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP Congestion Control

 Congestion control (host-network interaction) Prevents too much

data from being injected into the network

 TCP avoids sending small packets by accumulating octets until a

buffer is full or until a timer expires (default 2 ms).

 Each data byte has a sequence number!

 Used to reassemble segments in order

 Each sequence number must be acknowledged

 This is done by acknowledging the id of the first byte of the next TCP

packet (it is indicated at its header ack. 16 bits number)

 Initial sequence numbers should be assigned randomly to minimize

problems with duplicate numbers from different connections

ג"תשע/אב/ז"כ

47

93 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP Segment Structure

DATA
65535 – header bytes (Max)

TCP HEADER
20 bytes + optional part

In real life TCP packets are much smaller 500 bytes to 4K, and often

Just header with no data at all!

94 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP Segment Structure

ג"תשע/אב/ז"כ

48

95 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

 The TCP header consists of:

 Minimum 20-byte (5 words) of fixed-format info

 Optional part (always an integer multiple of 4-bytes)

 The TCP Data has at most 65535-20-20 minus the options length (bytes)

 The second -20 comes from IP header

 Thus any TCP segment can have at most 65535-20 (2^16-21) bytes in total

 However this number is usually severely limited by the network MTU

(maximum transfer unit) which is usually 1500 bytes

96 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP PORTS

 A port is a logical address for intercrosses communication node

 Ports provide multiple destinations within one host computer, and even within the

same process!

 port numbers below 256 are "well-known" ports like:

 21 for FTP

 23 for TELNET

 25 for SMTP

 80 for HTTP

 110 for POP3

 port numbers below 1024 are reserved for system services

 Only the administrator (like root in Unix) is allowed to allocate them

 Port numbers from 1024 to 65535 (2**16-1) can be used by user processes without

any special permission

ג"תשע/אב/ז"כ

49

97 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP SOCKETS

 A socket is a software object which represents a point of inter-process

communication (node)

 Sometimes called: Berkeley sockets

 Sometimes called: TSAP - Transport Service Access Point

 A socket is sometimes characterized by its IP number and port number, but

it has more than that (as a software unit with methods and data fields)

 Sockets provide multiple connection points within one host computer, and

even within the same process!

 More on sockets in the next lecture unit

98 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Sequence and

Acknowledgement

numbers

 A 32-bit number

 Every byte of the data is numbered

 The sequence number for a TCP segment is the id number of the

first data byte in the segment

 It does not need to start with 1!

 for good reasons – it better be random (after each reset)

 The range of valid sequence numbers is:

 0 to 4,294,967,295

 Or: 0x0000,0000 to 0xFFFF,FFFF

ג"תשע/אב/ז"כ

50

99 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

 Acknowledgement

Number

 A 32-bit number. Valid only if the ACK bit is turned on.

 Specifies the number of the next byte expected from the sender

 This the last byte correctly received + 1

 Sent with data from the receiver to the sender

 By this, the receiver confirms to the sender that it has received all

bytes below this number (ack. number)

 If this ack. segment does not arrive in certain time, the sender re-

transmits the previous segment (timer timeout)

100 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

16-bit window

 The number of data bytes in the segment beginning with the one indicated in the

acknowledgment field, which the sender of this segment is willing to receive next

 The “Acknowledgement number” field is the remaining receiver buffer size (bytes)

 Ack=0 signals that that the bytes up to acknowledgment number-1 have been

received, but the receiver is incapable to accept more data at this moment

 Later, if the receiver is ready to receive more data, it sends a segment with the same

acknowledgment number and a non-zero window size

 If this segment is lost, the sender re-transmits after timeout

ג"תשע/אב/ז"כ

51

101 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Header Length

 This is the number of 32-bit in the TCP header

 This info is required since the header sometimes can be longer than 4 words

 Only 4 bits are allocated to the TCP header length field

 So it can be at most 15 words long (60 bytes)

102 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Checksum

 Unlike the case of the IP datagram, checksum for TCP segment covers the

whole segment including data and header

 Before computing the checksum, the algorithm zeros the checksum field and

also includes a dummy IP header

ג"תשע/אב/ז"כ

52

103 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Urgent

Pointer

 Points to an urgent data a byte offset from the current sequence number

 Used to signal the receiver to abort broken FTP or TELNET sessions

 seldom used

104 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Options

 Simpler than IP options

 TCP option format:

 A single byte for the option type

 A length byte

 data bytes

 If the type requires it.

 Currently implemented options are:

 End of option list indicates the end of the options, in case the end of the

option bytes does not coincide with the end of the TCP headers

 Maximum segment size specifies the maximum segment size the sending

TCP would like to receive

kind length meaning

0 - end of option list

1 - no operation

2 4 maximum segment size

ג"תשע/אב/ז"כ

53

105 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

BITS
 URG=1 means the urgent pointer is a valid byte offset from the current sequence

number at which urgent data are to be found (interrupt message)

 Urgent mode is used when aborting rlogin or telnet connections, or ftp data transfers

 ACK=1 means the acknowledgment number is valid

 ACK=0 means there is no acknowledgment in this segment (usually no data)

 PSH=1 then receiver should pass this data to the application ASAP

 The receiver is requested to deliver the data to the application upon arrival and not buffer it

 RST - Reset (close) the connection

 after a crash or errors (such as ack to a packet you never sent)

 SYN - Synchronize sequence numbers to begin a connection (see next slide)

 FIN - The sender has finished sending data (close)

 Unused 6 bits – too bad! (lots of electricity waste …)

 at some point used to debug the protocol

 Lately used to pass performance info between hosts

106 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SYN: handshake (by example)

 Step 1: Sender sends a TCP segment with SYN = 1, ACK = 0, and

ISN=7000 (Initial Sequence Number example)

 SYN is short for Synchronize

 The ISN=7000 is the beginning of the sequence numbers for data that the sender

will transmit

 SYN flag announces an attempt to open a connection

 If connection established then the first byte transmitted to the receiver will

have the sequence number ISN+1

 Step 2. After receiving this TCP segment, the receiver returns a TCP

segment with SYN = 1, ACK = 1, ISN = 5000 (the receiver starting sequence

number), and Acknowledgment Number = 7001

 Step 3. the sender sends a TCP segment to the receiver that acknowledges

the receiver’s ISN, With flags set as SYN = 0, ACK = 1, Sequence number

= 7001, Acknowledgment number = 5001

 This handshaking technique is referred to as the Three-way handshake or

SYN, SYN-ACK, ACK.

ג"תשע/אב/ז"כ

54

107 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP Sliding Window Algorithm

• YouTube Visualization movie

• The idea: allow sender to send multiple packets without waiting for

acknowledgement

• But how many packets?

• Step 1: Send 1 packet and wait for ack.

• After getting ack. 1 from the receiver, inspect the advertised “window

size”: this is the size of buffer that the receiver has for buffering packets

• Sender calculates how many packets can fit in window size and send all

of them without waiting for ack. After that the sender waits for acks.

• This process repeats after getting each ack.

• Sender usually buffers window packets, since it may need to re-transmit

some of them

• Receiver also need to buffer them in order to acknowledge early packets

• If the receiver’s buffer is squeezed or finished, it may advertise a very

low window size which will force the sender to slow down or stop

108 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TCP Sliding Window Algorithm: Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sliding Window

• Sender shoots 6 packets in a row with no ack. And then waits for ack. (window size is

large enough to allow 6 packets)

• Receiver gets all packets except for packet 4

• Receiver sends ack. to packets 1,2,3 but cannot ack. packets 5, 6 (packet 4 was lost)

• After timeout, sender re-transmits packet 4, waits for ack. to packets 4, 5, and 6

• Receiver gets packet 4 and sends ack. for packets 4, 5, and 6

• Receiver may decrease window size of TCP header, and thus “slide” the window down

X

• Advanced protocols dynamically tune the window size to be suitable for both sides

• This sliding window is usually noticed when transmitting big files from one Windows machine to another,

initially the time remaining calculation will show a large value and will come down later

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sliding Window

https://www.youtube.com/watch?v=lkfZ6ifMirw&feature=youtube_gdata_player

ג"תשע/אב/ז"כ

55

109 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Ethernet

Frame

• MAC Address = Ethernet card 12 bytes id
• MAC = Media Access Control
• Example: b0:a0:92:48:72:45
• placing the CRC at the end of a frame reduces

packet latency and reduces hardware buffering
requirements

Header Destination MAC Address

Source MAC Address

Protocol ID

body
DATA

Trailer CRC Checksum

110 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

00 A0 92 48 72 45
00 00 0C 05 C3 58
08 00

4
5
00
00 29
DB FB
40 00
FE
06
7D CB
81 6E 1E 1A
81 6E 02 11

02
54 41 4D 49 4C

02 8B
02 03
6A 86 7B 57
B6 B6 B0 20
50
10
24 00
15 89
00 00

D7 87 6C A4

dest. MAC address = 0:a0:92:48:72:45
source MAC address = 0:0:c:5:c3:58
network protocol = 0x0800 (IP)

IP version = 4
header length = 5 words (word=4 bytes)
type of service = 0 (normal)
length = 0x29 octets = 41 bytes
datagram identification
don't fragment
TTL = 254
transport protocol type = 6 (TCP)
header checksum
source IP address = 129.110.30.26
destination IP address = 129.110.2.17

source port = 0x028b (651 dec.)
desti. port = 0x0203 (515 dec., printer)
source seqno = 1787198295 (dec.)
acknowledgment no = 3065425952 (dec.)
header length = 5 words
indicates an ACK
window size = 0x2400 (9216 dec.)
TCP checksum
urgent pointer off

Data byte
Padding to make a 46 byte IP datagram

Ethernet checksum (Ethernet trailer)

A DECODED ETHERNET FRAME

Ethernet Header

IP header

DATA

TCP header

Ethernet Trailer

ג"תשע/אב/ז"כ

56

111 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

UDP Header

• Protocol number = 17
• Always 8 bytes length header
• UDP Length = Header + Data length in bytes
• Maximum length = 65515 (due to IP size limit)
• Checksum cover the full packet (header+data)
• Checksum usage is optional (usually=0)
• No flow control!
• No congestion control!
• Unreliable! (up to user processes)
• Packet order, timing, and error control are

usually done at the data level
• DNS I using UDP for name resolution

112 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

ICMP Protocol

 ICMP - Internet Control Message Protocol

 used by the operating systems to send error messages indicating, for

example, that a requested service is not available or that a host or

router could not be reached

 Another example: if a router receives a packet larger than the next

hop MTU, it may drop the packet and send an ICMP message which

indicates the condition “Packet too Big”, or it may fragment the

packet and send it over the link with a smaller MTU

 ICMP can also be used to relay query messages

 It is assigned protocol number 1

 We skip the header and other details in this course (read

Tanenbaum for more details)

ג"תשע/אב/ז"כ

57

113 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

TRANSPORT LAYER

SOCKET PROGRAMMING

Part 4

114 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Transport Layer

 Data transmission service goals for the application layer

 Efficiency

 Reliability

 Accuracy

 Cost-effective

 The entity that does the work is called the transport entity

 The transport entity

 Is usually part of the operating system kernel

 sometimes a separate library package which is loaded by the OS or

even user processes

 And sometimes even on the network interface card

 The transport entity (TCP) employs the services of the network

layer (IP), and its associated software and hardware (cards and

device drivers)

ג"תשע/אב/ז"כ

58

115 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Transport Layer

 The transport entity code runs entirely on users machines, but the

network layer mostly runs on routers, cards, and other bridging

hardware

 Bridging hardware is inherently unreliable and uncontrollable

 Ethernet cards, routers, and similar hardware do not contain

adequate software for detecting and correcting errors

 To solve this problem we must add another layer that improves the

quality of the service:

 the transport entity detects network problems: packet losses,

packet errors, delays, etc.

 and then fixes these problems by: retransmissions, error

corrections, synchronization, and connection resets

 Transport layer interface must be simple and convenient to use

since it is intended for a human user

116 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Transport Service Primitives

Server

Client

Server/Client

Server/Client

Server/Client

 These are the basic logical actions between two communication points

 A communication point is created by a process that runs on a machine

 There are several software implementations of these abstract model

 The most common is called: “Berkeley Sockets”

 Note that the “LISTEN” and “RECEIVE” actions do not involve any

packet transmission! These are actually operating system states:

 LISTEN – go to sleep until a connection arrives (OS is attending)

 RECEIVE – go to sleep until data arrives (OS does the buffering)

ג"תשע/אב/ז"כ

59

117 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Ethernet Frame

T
C

P
 h

e
a
d
e
r

E
th

e
rn

e
t
h

e
a

d
e

r

IP
 h

e
a

d
e

r

IP datagram

TCP segment

E
th

e
rn

e
t

tr
a
ile

r

Packet Hierarchy

Physical Layer

Network Layer

Transport Layer

118 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Berkeley Sockets

 Sockets first released as part of the Berkeley UNIX

4.2BSD software distribution in 1983

 They quickly became popular

 The socket primitives are now widely used for Internet

programming on many operating systems

 There is a socket-style API for Windows called ‘‘winsock’’

ג"תשע/אב/ז"כ

60

119 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Berkeley Socket Services

 The SOCKET primitive creates a new endpoint and allocates table space for it

within the transport entity

 The first four primitives are executed in that order by servers

 A successful SOCKET call returns an ordinary file descriptor for use in

succeeding calls, the same way an OPEN call on a file does

ClientServer

Server

Server

Server

Client

Client/Server

Client/Server

Client/Server

120 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SERVER SOCKET

 Newly created socket has no network address (yet)

 The machine may have several addresses (thru several interface cards)

 It must be assigned using the BIND primitive method

 Once a socket has bound an address, remote clients can connect to it

 The parameters of the SOCKET call specify the addressing format to

be used, the type of service desired (reliable byte stream , DGRA, etc),

and the protocol.

import socket
Creating a server socket on the local machine
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 2525))
sock.listen(5)
new_sock, (client_host, client_port) = sock.accept()
print "Client:", client_host, client_port

ג"תשע/אב/ז"כ

61

121 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

CLIENT SOCKET

 A client socket is created exactly as a server socket except that it does

not locally bound to the machine, and it does not listen

 A client socket is connecting to an already running server socket,

usually on a remote host, but also on the local host (as yet one more

method of inter-process communication!)

import socket
Creating a client socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = socket.gethostname()
connect to local host at port 2525
server = (host, 2525)
sock.connect(server)

122 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

CONNECT & ACCEPT primitives

 When a CONNECT request arrives from a client to the server, the

transport entity creates a new copy of the server socket and returns

it to the ACCEPT method (as a file descriptor)

 The server can then fork off a process or thread to handle the

connection on the new socket and go back to waiting for the next

connection on the original socket

 ACCEPT returns a file descriptor, which can be used for reading and

writing in the standard way, the same as for files.

import socket
Creating a server socket on the local machine
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 2525)) # bind to all local interfaces
sock.listen(5) # allow max 5 simultaneous connections
newsock, (client_host, client_port) = sock.accept()
print "Client:", client_host, client_port

ג"תשע/אב/ז"כ

62

123 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SEND & RECEIVE primitives

 The CONNECT primitive blocks the caller and actively starts the

connection process (the transport entity is in charge)

 When it completes (when the appropriate TCP segment is received

from the server), the client process is awakened by the OS and the

connection is established

 Both sides can now use SEND and RECEIVE to transmit and receive

data over the full-duplex connection

server to client:
newsock.send("Hello from Server 2525")

client to server
server = (host, 2525)
sock.connect(server) # connect to server
sock.recv(100) # receive max 100 chars

124 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

CLOSE primitive

 When both sides have executed the CLOSE method, the connection is

released

 Berkeley sockets have proved tremendously popular and have

became the standard for abstracting transport services to applications

 The socket API is often used with the TCP protocol to provide a

connection-oriented service called a reliable byte stream

 But sockets can also be used with a connectionless service (UDP)

 In such case, CONNECT sets the address of the remote transport

peer and SEND and RECEIVE send and receive UDP datagrams to

and from the remote peer

Server:
newsock.close()

Client
sock.close()

ג"תשע/אב/ז"כ

63

125 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

The Simplest Client/Server App

import socket
creating a client socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = socket.gethostname()
connect to local host at port 2525
server = (host, 2525)
sock.connect(server)
print sock.recv(100)
sock.close()

import socket
Creating a server socket on the local machine
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 2525))
sock.listen(5)
newsock, (client_host, client_port) = sock.accept()
print "Client:", client_host, client_port
newsock.send("Hi from server 2525")
newsock.close()

SERVER

CLIENT

Q: How many clients can connect to this server?

126 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Socket

Programming

Example in C:

Internet File

Server

Client code using sockets:

Client program that requests a

File from a server program

ג"תשע/אב/ז"כ

64

127 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Socket

Programming

Example in C:

Internet File

Server (2)

Server code

128 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

C Socket API (1)
// Usually located at /usr/include/sys/socket.h

/* Create a new socket of type TYPE in domain DOMAIN, using
 protocol PROTOCOL. If PROTOCOL is zero, one is chosen automatically.
 Returns a file descriptor for the new socket, or -1 for errors. */

extern int socket (int __domain, int __type, int __protocol) __THROW ;

/* Give the socket FD the local address ADDR (which is LEN bytes long). */

extern int bind (int __fd, __CONST_SOCKADDR_ARG __addr, socklen_t __len)
 __THROW;

/* Put the local address of FD into *ADDR and its length in *LEN. */
extern int getsockname (int __fd, __SOCKADDR_ARG __addr,
 socklen_t *__restrict __len) __THROW;

/* Open a connection on socket FD to peer at ADDR (which LEN bytes long).
 For connectionless socket types, just set the default address to send to
 and the only address from which to accept transmissions.
 Return 0 on success, -1 for errors.
 This function is a cancellation point and therefore not marked with
 __THROW. */

extern int connect (int __fd, __CONST_SOCKADDR_ARG __addr, socklen_t __len);

ג"תשע/אב/ז"כ

65

129 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

C Socket API (2)
/* Open a connection on socket FD to peer at ADDR (which LEN bytes long).
 For connectionless socket types, just set the default address to send to
 and the only address from which to accept transmissions.
 Return 0 on success, -1 for errors.

 This function is a cancellation point and therefore not marked with
 __THROW. */

extern int connect (int __fd, __CONST_SOCKADDR_ARG __addr, socklen_t __len);

/* Send N bytes of BUF to socket FD. Returns the number sent or -1.

 This function is a cancellation point and therefore not marked with
 __THROW. */

extern ssize_t send (int __fd, const void *__buf, size_t __n, int __flags);

/* Read N bytes into BUF from socket FD.
 Returns the number read or -1 for errors.

 This function is a cancellation point and therefore not marked with
 __THROW. */

extern ssize_t recv (int __fd, void *__buf, size_t __n, int __flags);

130 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

WWW Client Sockets (v1)
import socket, os

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
google_server = ("www.google.com", 80)
sock.connect(google_server)
HTTP protocol "GET" command
sock.send("GET / HTTP/1.0\r\n\r\n")

Receiving the index.html file
bufsize = 4096
html_file = "c:/workspace/index.html"
f = open(html_file, "w")
while True:
 data = sock.recv(bufsize)
 if not data:
 f.close()
 break
 f.write(data)

os.system("notepad.exe " + html_file)
#os.startfile(html_file)

ג"תשע/אב/ז"כ

66

131 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python File Server (v1)

import socket, sys

servsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
servsock.bind(("", 12345)) # bind to all local host interfaces
servsock.listen(25) # set maximum accept rate to 25 connections

while True:
 newsock, address = servsock.accept()
 file = newsock.recv(255) # receive file name: max 255 chars
 print "File =", file
 f = open(file, "rb") # open file for reading in binary mode
 while True:
 data = f.read(4096)
 if not data:
 f.close()
 break
 n = newsock.send(data)
 if n<len(data):
 raise Exception("send error: transmitted less than data length")
 newsock.close()

132 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python File Client (v1)

To be run from the command line
import socket, sys

remote_file_name = sys.argv[1]
local_file_path = sys.argv[2]

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("localhost", 12345))
sock.send(remote_file_name)
f = open(local_file_path, "wb")
while True:
 data = sock.recv(4096)
 if not data:
 f.close()
 break
 f.write(data)

sock.close()

ג"תשע/אב/ז"כ

67

133 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Conversation Techniques

 A reliable and robust communication between two sockets, can

sometimes become a highly complex and fragile

 To simplify it and manage its complexity, some strict rules must be

followed

 A message must be sent in one of the following modes:

1. Fixed length (like always 40 bytes, with padding if necessary)

2. Delimited (like: “name = Dan Hacker\n”)

3. Predefined length:

 “240 message … ends … after … 240 bytes”

The size itself can be of fixed length or delimited

4. End by shutting down the connection

 In practice, all these 4 methods are used in combination!

134 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Safe Socket Send

def safe_send(sock, message):
 i = 0
 n = len(message)
 while i < n:
 sent = sock.send(message[i:])
 if sent == 0:
 raise RuntimeError("socket connection broken")
 i += sent

 In general this is not needed, but in some rare cases the socket send method

is not guaranteed to send all the message!!

 It may send just a part of it, and therefore we must ensure sending the full

message

 In most cases (short messages) this is not needed, but keep this in mind!

 The sendall() method has the same effect

ג"תשע/אב/ז"כ

68

135 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

A Safe Socket sendall() method

r = sock.sendall(data)
if not r is None:
 print "Exceptional socket sendall return code:", r
 raise Exception("send error: data was not fully transmitted")

 The socket class is already equipped with a safe sendall() method

which does not return until it sent the whole message, or until an error

is encountered

 None is returned on success. On error, an exception is raised, and

there is no way to determine how much data, if any, was successfully

sent.

136 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Receiving Fixed Size Message

def recv_fixed_size(sock, expected_size, bufsize=0):
 if bufsize == 0:
 bufsize = min(expected_size, 4096)
 message = ""
 while len(message) < expected_size:
 chunk = sock.recv(bufsize)
 if chunk == "":
 raise RuntimeError("socket connection broken")
 message += chunk
 return message

 The socket recv() method may get less characters than requested

 To be fully safe, we need to run recv() several times to get the full

message (provided we know the exact message size in advance!)

 The next function ensures that we get an exact number of bytes from

the socket

ג"תשע/אב/ז"כ

69

137 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Receiving a Delimited Message

def recv_delimited_message(sock, limit='\n'):
 message = ""
 while True:
 char = sock.recv(1)
 if char == "":
 return None
 if char == limit:
 break
 else:
 message += char
 return message

 Delimited message are messages that end with a delimiting character that is

agreed by both sides

 The usual delimiting character is the newline character ‘\n’, or some special

character (such as ‘@’)

 This is however slow due to the fact that we must receive 1 character at a time

138 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

 EXAMPLE

 Note that the message itself drops the delimiting char! (i.e., the

delimiting char is not part of the message!)

Receiving a Delimited Message

client side:
sock.sendall(“c:/workspace/oliver.txt” + '\n')

server side:
file = recv_delimited_message(servsock)
file = “c:/workspace/oliver.txt”

ג"תשע/אב/ז"כ

70

139 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Send and Receive with a Size Header

 A faster technique for sending and receiving messages with a known size is by

appending a “fixed size header” to the message itself

 Simple “encode/decode” methods are enough to make this technique very

easy and efficient to use (between a client and server that agree on it)

 Here is the key idea:

 Compute the message size in hexadecimal form

 Pack this size into an 8 chars hex string, possibly by adding leading zeros

to it if it is too short

 Place the header in front of the message and send it!

 Example: message = “Hello Web Wide World”

 Decimal size = 20

 Hexadecimal = 0x14

 Header (8 bytes) = “00000014” (removed the leading 0x)

 Send message = “0000014Hello Web Wide World”

140 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Code for: send_size and recv_size

 Example: recv_size(“0000014Hello Web Wide World”)

Will first get the first 8 chars header: “00000014”

Then convert it to decimal: size=20

Then recv the next 20 chars which form the message itself:

 “Hello Web Wide World”

convert message length to hex and chop the leading '0x'
def send_size(sock, message):
 size_string = hex(len(message))[2:]
 data = (8 - len(size_string)) * '0' + size_string + message
 sock.sendall(data)

The receiver gets the first 8 bytes, adds a “0x”
prefix, and converts the hex to decimal
def recv_size(sock, bufsize=0):
 hexstr = "0x" + recv_fixed_size(sock,8)
 size = int(hexstr, 16)
 return recv_fixed_size(sock, size, bufsize)

ג"תשע/אב/ז"כ

71

141 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

File Retrieval Routine

Dump socket output (sock.recv) to a local file
def recv_to_file(sock, filename, mode='w', bufsize=4096):
 f = open(filename, mode)
 while True:
 data = sock.recv(bufsize)
 if not data:
 f.close()
 break
 f.write(data)

 Retrieving a file trough a socket is very common, so we better have a

common function that does it effectively

 This is also a safe measure for draining the socket into a local file: we

are sucking all data from the socket until it has nothing else to receive

 However this is good only if socket closes connection after sending file

142 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

File Retrieval Routine

def recv_fixed_size_to_file(sock, size, file, mode="wb", bufsize=0):
 if bufsize == 0:
 bufsize = min(size, 4096)
 f = open(file, mode)
 curr_size = 0
 while curr_size < size:
 data = sock.recv(bufsize)
 if data == "":
 raise RuntimeError("socket connection broken")
 f.write(data)
 curr_size += len(data)
 f.close()

 For server socket that sends many files, the standard method is:

1. Send the file size to the client

2. Send the file stream to the client

 The next function retrieves a fixed size stream to a file:

ג"תשע/אב/ז"כ

72

143 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Send File Routine

def send_file(sock, file, mode="rb", bufsize=4096):
 f = open(file, mode) # open file for reading in binary mode
 while True:
 data = f.read(bufsize)
 if not data:
 f.close()
 break
 rcode = sock.sendall(data)
 if not rcode is None:
 print "Exceptional socket sendall return code:", rcode
 raise Exception("send error: data was not fully transmitted")

 Sending a file through a socket is also a very common routine, which

we have already encountered several times

 Here is a safe function for sending a local file from a local socket to a

remote host

144 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

socket_utils module

if you throw it to: “c:/workspace”, then:
import sys
sys.path.append("c:/workspace“)
from socket_utils import *

if you throw it to “c:\python27\lib, then it will work immediately:
from socket_utils import *

Not that this module also imports: socket, time, hashlib, os, threading

 All these new socket utilities are assembled in the in the socket_utils

module. It can be downloaded from:

 http://tinyurl.com/samyz/cliserv/lab/socket.zip

 You can download it and throw in your Python library, and then import

it to your Python programs (see below)

 You are encouraged to improve and add new utilities to this module!

 So it is expected to change a lot until we reach Projects 4 and 5, in

which we will make important use with this module! (stay tuned)

ג"תשע/אב/ז"כ

73

145 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

WWW Client Sockets (v2)

from socket_utils import *

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
google_server = ("www.google.com", 80)
sock.connect(google_server)
sock.send("GET / HTTP/1.0\r\n\r\n")
html_file = "c:/workspace/index.html"
recv_to_file(sock, html_file)
os.system("notepad.exe " + html_file)
#os.startfile(html_file)

 Here is version 2 of our www connection to Google web server

 This time we are using our recv_to_file utility function to drain the

socket to an html file

146 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

WWW Client Sockets (v3)

from socket_utils import *

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server = ("www.google.co.il", 80)
sock.connect(server)
sock.send("GET /search?q=python+socket+programming HTTP/1.0\r\n\r\n")
html_file = "c:/workspace/index.html"
recv_to_file(sock, html_file)
os.system("notepad.exe " + html_file)
os.startfile(html_file)

 In version 3 we present a more interesting GET request:

 Google search query

ג"תשע/אב/ז"כ

74

147 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

WWW Client Sockets (v4)

from socket_utils import *

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
html_file = "c:/workspace/index.html"

server = ("www.cs.uic.edu", 80)
sock.connect(server)
sock.send("GET /~jbell/CourseNotes/OperatingSystems/index.html HTTP/1.0\r\n\r\n")
recv_to_file(sock, html_file)
os.startfile(html_file)

 One more example with a deep path

148 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python File Server (v2)

import socket, sys

servsock = socket.socket()
servsock.bind(("localhost", 12345))
servsock.listen(20) # set maximum accept rate to 20 connections

id = 0
while True:
 newsock, address = servsock.accept()
 id += 1
 start = time.time()%1000
 file = newsock.recv(255) # receive file name: max 255 chars
 send_file(newsock, file)
 end = time.time()%1000
 print "Connection %d: File = %s, Time = %.2f-%.2f" % (id, file, start, end)
 newsock.close()

ג"תשע/אב/ז"כ

75

149 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Notes on socket send/recv

 When a recv() returns 0 bytes, it means the other side has closed

the connection (or is in the process of closing connection)

 You will not receive any more data on this connection! Ever!

 But you may be able to send data successfully

 Similarly: if a send() returns after handling 0 bytes, the connection

has been closed or broken

 Example: HTTP uses a socket for only one transfer:

 The client sends a request, then reads a reply. That’s it.

 The socket is discarded

 This means: a client can detect the end of the reply by receiving 0 bytes

 (which corresponds to the fourth type of message transfer)

150 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python File Client (v2)

To be run from the command line
from socket_utils import *
import sys

remote_file_name = sys.argv[1]
local_file_path = sys.argv[2]

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
file_server = ("localhost", 12345)
sock.connect(file_server)
sock.send(remote_file_name)
recv_to_file(sock, local_file_path, 'wb')
sock.close()

ג"תשע/אב/ז"כ

76

151 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Quality Checks

 Testing networking applications is a very critical and difficult domain

 Google invests a substantial amount of resources for testing and

validating its networking infrastructure and applications

 Examples: making sure that gmail message

 Arrive on time

 Are not lost

 Are not modified on their journey

 Backup and restore

 Performance under congested and stressful networking conditions

 To get an idea on this domain, we will write a Python program that

tests our file transfer server and client

152 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Quality Checks Plan

 Choose several files from different sizes for our Test Plan

 We already have the Oliver twist book and our huge db.csv database

 Write a function that uses the file server to transfer a given file

 Write a function which loops over the previous function a large number

of times (like: 20, 50, 100, and even 1000 times!)

 Our test program should check the following things:

 The remote file and the transferred file are identical on each iteration

 The transfer speed is reasonable and is uniform across all experiments

 CPU consumption is not too high

 memory usage is reasonable (no leaks or swamp)

 To be further discussed in class

ג"תשע/אב/ז"כ

77

153 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Project 4: BFTP

Braude File Transfer Protocol

 This is our next course project

 All 4 first versions of our small file server/client were have focused only

on one operation: GET file

 A normal File transfer service usually have more than this operation.

To list a few: GET, PUT, LIST, PWD, CD, DELETE, and more.

 These operations are discussed in the initial project draft. We will all

make efforts to define the final project goals in the next week or two

 Please visit the course web site and read more on project 4 and try to

help in defining the protocol and checking the common code

 To check the socket_utils code, try it on the previous small tests (1-4)

154 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Process and Threads Concepts

 A process (or job) is a program in execution

 A process includes:

1. Text (program code)

2. Data (constants and fixed tables)

3. Heap (dynamic memory)

4. Stack (for function calls and temporary variables)

5. Program counter (current instruction)

6. CPU registers

7. Open files table (including sockets)

 To better distinguish between a program and a
process, note that a single Word processor program
may have 10 different processes running
simultaneously

 Consider multiple users executing the same Internet
explorer (each has the 6 things above)

 Computer activity is the sum of all its processes

ג"תשע/אב/ז"כ

78

155 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Process States

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

156 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

CPU Process Scheduling

 Modern operating systems can run hundreds (or thousands) of

processes in parallel !

 Of course, at each moment, only a single process can control the

CPU, but the operating system is switching processes every 15

milliseconds (on average) so that at 1 minute, an operating system

can switch between 4000 different process!

 The replacement of a running process with a new process is

generated by an INTERRUPT

ג"תשע/אב/ז"כ

79

157 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

One Process, Many Threads!

TEXT (PROGRAM CODE)

DATA

HEAP (Dynamic Memory)

OPEN FILES TABLE

Program Counter

Stack

THREAD 1

Registers

Program Counter

Stack

THREAD 2

Registers

Program Counter

Stack

THREAD 3

Registers

Program Counter

Stack

THREAD 4

Registers

P
ro

c
e
s
s
 P

a
rt

s

158 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

THREADS

 A thread is a basic unit of CPU utilization consisting of

 Program counter

 Registers

 Stack

 Thread ID

 Every thread is running in the context of a parent process which have

 TEXT (Program Code)

 DATA (constants)

 HEAP (Dynamic Memory

 Open Files Table

 A process consists of multiple threads which share these 4 things

 This means that several threads can use and share a common

variable, a common open file, and even a common socket! In parallel

ג"תשע/אב/ז"כ

80

159 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

THREADS

 In modern operating systems, a process can be divided into several

tasks that operate in parallel

 These tasks can sometimes run independently of each other, and

sometimes with minimal interdependencies (or else it’s better to give

up threads!)

 This is particularly desirable if one of the tasks may block (and block

the entire process), and then allow the other tasks to proceed without

blocking

 Example: Microsoft Word process sometimes involves the following

activities within a single running process:

 A foreground thread processes user input (keystrokes)

 Second thread makes spelling and grammar checks

 Third thread loads images from the disk (or internet)

 Fourth thread performs incremental backup in the background

160 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

THREADS - Notes

 Threads are easier to create than processes since they do not require

a separate address space!

 Multithreading requires careful programming since threads share data

structures that should only be modified by one thread at a time!

 Unlike threads, processes do not share the same address space and

thus are truly independent of each other.

 Problem in one thread can cause the parent process to block or crash

(and thus kill all other threads!)

 Threads are considered lightweight because they use far less

resources than processes

 Threads, on the other hand, share the same address space, and

therefor are interdependent

 Therefore a lot of caution must be taken so that different threads don't

step on each other!

ג"תשע/אב/ז"כ

81

161 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python Threads: Hello 1

from threading import Thread
from time import strftime

class MyThread(Thread):
 def run(self):
 threadName = self.getName()
 timeNow = strftime("%X")
 print "%s says Hello World at time: %s" % (threadName, timeNow)

Openning 5 threads
for i in range(5):
 t = MyThread()
 t.start()

162 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Python Threads: Hello 2
import os, time, random
from threading import Thread

def hello(tname):
 delay = 0.050 + 0.100 * random.random() # random value between 0.050 to 0.150 (seconds)
 time.sleep(delay)
 print "Delay =", delay
 print "Hello from thread %s" % (tname)

def run_threads():
 print "Process ID =", os.getpid()
 t1 = Thread(target=hello, args=('t1',))
 t2 = Thread(target=hello, args=('t2',))
 t3 = Thread(target=hello, args=('t3',))
 t4 = Thread(target=hello, args=('t4',))
 t5 = Thread(target=hello, args=('t5',))

 threads = [t1, t2, t3, t4, t5]

 for t in threads:
 print "Starting thread:", t
 t.start()

 for t in threads:
 t.join()

ג"תשע/אב/ז"כ

82

163 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

PROTOCOL DESIGN

Part 5

164 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

AGENDA

 Networking Protocol Design Principles

 Common Networking Protocol Techniques

 Learn from old and highly used internet protocols

 Introducing SMTP, POP3, and IMAP by examples

ג"תשע/אב/ז"כ

83

165 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Principles of Protocol Design

 Reference: http://nerdland.net/2009/12/designing-painless-protocols

166 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 1

Do not re-invent the Wheel!

 Try first to use existing protocols, or at least to imitate

them as much as possible

 Protocols which survived many years are probably good

and well thought

 They passed a lot of storms and fire tests and they are

still here!

 For this, we need to get to know at least the most

popular ones first

http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols

ג"תשע/אב/ז"כ

84

167 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 2

KISSD - Keep It Simple Stupid and

Deterministic

 Complicated protocols are doomed to cause chaos, complications,

and eventually die!

 At every stage it should be completely clear what can happen next!

 Situations in which anything can happen lead to "code pollution“

and later to horrible bugs and eventually to “protocol death”

168 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 3

Prefer Human Readability

 Prefer plain simple text on short cryptic codes

 Unless speed is truly the most important factor in your system!

 Always better to sacrifice speed for readability

 "less is more" principle

 Commands like LOGIN, GOODBYE, HELLO, QUIT are much

clearer than codes like: 031, 404, 502, etc.

 If your protocol is going to contain free-form text then your protocol

really should use Unicode!

 English is most definitely not the only language on the Internet!

ג"תשע/אב/ז"כ

85

169 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 4

Make Magic Numbers Meaningful

 In many cases, numeric status codes can be useful and even

human readable

 Make sure to use meaningful numbers with clear structure

 For example every HTTP response comes with a numeric status

code prefix

 Everyone is familiar with:

HTTP 404 code ("File Not Found" error code)

 In most cases, it's just enough to see the number and immediately

understand what happened

 The meaning embedded in this code is the first digit: 4

 User quickly catch the “400” response family

170 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 4 Example

Make magic numbers meaningful

200 Request was accepted and fulfilled

301 Page moved

400 Bad request

402 Payment required

403 Forbidden request

404 File not found

500 Server Error

501 Not implemented

1xx information

2xx content

3xx redirection

4xx client error

5xx server error

Details:

Architecture:

ג"תשע/אב/ז"כ

86

171 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 5

Scalability: Design for Expansion!
 If your protocol is good, it will be revised and extended later on

(again and again!). Prepare for this from the start!

 Assign meaningful numbers or bit masks as described in principle

4, and reserve bits and fields for future use

 Indicate your protocol version immediately after handshaking (like:

"HTTP/1.0")

 Force both connections to announce and match their protocol

versions immediately after handshaking

 Thus if a fatal design flaws are found after a year or two, upgrade

your protocol to next version and slowly deprecate the old version

 The backbone protocol of the Internet, IP, does exactly this! and

that helps makes IPv6 possible! (the IP version is an integral part of

the IP header!)

172 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 6

Don’t be stingy with information
 never hide relevant information from the other side (unless there is

a security concern)

 Practically it means: each end of the connection should be able to

query the other side for any relevant information

 Example: In the BFTP server/client project

 the client should be able to query the server if a file exists

before attempting to retrieve it, or get a list of files in a directory

 Otherwise, we will never be able to know if a file cannot be

retrieved due to server error connection problem? or it simply

does not exist?

 could be very frustrating or lead to inefficient actions

ג"תשע/אב/ז"כ

87

173 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 7

Document your protocol precisely !!!
 Write a clear and full design specification of your protocol before

you implement it

 You cannot implement a protocol which was not clearly designed

and well thought

 For example, it is a bad idea to have a “restart connection”

command without documenting what exactly should happen when

this command is issued? What to do with partial buffers? Late

packets? How many consecutive restarts are ok? etc.

174 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 8

Postel’s Law: “be conservative in what

you do, be liberal in what you accept

from others.”
 This was originally coined in RFC 761, the document specifying TCP

 This is a very important, and widely known principle, yet also widely

misunderstood

 The most notorious misapplication of this principle was in the

implementation of early HTML parsers.

 Based on this idea, the parsers would take in any old junk that vaguely

resembled HTML and try as hard as possible to display something on the

browser

 The result of this extreme laxity was more than a decade of the nightmare

known as “tag soup” which is only now beginning to heal from

ג"תשע/אב/ז"כ

88

175 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Postel’s law

Postel’s Law: “be conservative in what you do, be

liberal in what you accept from others.”

 The real meaning of the Robustness Principle is not that erroneous input

should be accepted as valid, but that erroneous input should not cause

catastrophic failure!

 Valid parts of a partially-erroneous input should be accepted if possible,

and that diagnostics should be given for erroneous input when feasible

 An HTML parser implementation that properly followed this rule would,

upon receiving “tag soup” HTML

 produce a warning message that the HTML was invalid

 hopefully display some information about what was wrong (e.g.

unclosed anchor tag, missing doctype, etc)

 and only then try to (or give the option to) display the parser’s best

approximation of what the author meant

176 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 9

Design for security from the start
 Security is a common problem to many of the standard protocols, which

we live with its detrimental effects every day

 These protocols, designed when the Internet was in its infancy as an

academic and governmental experiment, were not designed with security

in mind

 This is what facilitates spam, denial-of-service, phishing, privacy invasion,

and all other sorts of Internet security problems

 Today, however, it is unacceptable to design a new protocol without giving

it serious thought from the start

 Experience shows that if it is not done at the start, it may become too hard

to do after a protocol has been widely deployed

 Encryption should be a layer: once the encryption layer is removed, the

protocol should continue to adhere to the design principles articulated

above

ג"תשע/אב/ז"כ

89

177 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Learn From

Examples:
Common Internet Protocols

178 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SMTP – Simple Mail Transport Protocol

Described by RFC 2821 (RFC = Request For Comments)

CLIENT: <<client connects to service port 25>> # HANDSHAKING
CLIENT: HELO shark.braude.ac.il # Sending host identifies itself
SERVER: 250 OK Hello shark, glad to meet you # Server acknowledges
CLIENT: MAIL FROM: <dan@braude.ac.il> # Identify sending user/domain
SERVER: 250 <dan@braude.ac.il>... Sender ok # Server acknowledges
CLIENT: RCPT TO: ran@stimpy.com # Identify target user
SERVER: 250 root... Recipient ok # Server acknowledges
CLIENT: DATA
SERVER: 354 Enter mail, end with "." on a line by itself
CLIENT: Hi Fred: Frenchy called. He wants to share
CLIENT: options, cards,
CLIENT: and a large collection of old baseball bats
CLIENT: Lehitraot,
CLIENT: Dan
CLIENT: . # End of multiline send
SERVER: 250 WAA01865 Message accepted for delivery
CLIENT: QUIT # Client (email sender) signs off
SERVER: 221 stimpy.com closing connection # Server disconnects
CLIENT: <<client hangs up>>

ג"תשע/אב/ז"כ

90

179 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SMTP: Protocol Design

 SMTP is used for uploading mail to a mail server

 Client requests have a simple command line format:

 HELO ...

 MAIL ...

 DATA ...

 RCPT ...

 Server responses consisting of a status code followed by an informational

message:
 250 <dan@braude.ac.il>... Sender ok
 221 stimpy.com closing connection

 Server response consists of a status code and a human message

 Protocol software uses the status code and usually ignores the human part

 The DATA command sends the mail body, terminated by a line consisting of

a single dot

180 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SMTP: Main Commands

 SMTP is one of the oldest application layer protocols which is still in high use

on the Internet today

 It is simple, effective, and has withstood the test of time

HELO <sendinghostname>
 This command initiates the SMTP conversation.
 The host connecting to the remote SMTP server identifies itself
 by it's fully qualified DNS host name.

MAIL From:<source email address>
 This is the start of an email message.
 The source email address is what will appear in the
 "From:" field of the message.

RCPT To:<destination email address>
 This identifies the receipient of the email message.
 This command can be repeated multiple times for a given
 message in order to deliver a single message to multiple recepients.

For more details look at: http://the-welters.com/professional/smtp.html

http://the-welters.com/professional/smtp.html
http://the-welters.com/professional/smtp.html
http://the-welters.com/professional/smtp.html
http://the-welters.com/professional/smtp.html

ג"תשע/אב/ז"כ

91

181 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

POP3 – Retrieve mail from server
CLIENT: <<client connects to service port 110>>
SERVER: +OK POP3 server ready <1896.6971@mailgate.dobbs.org>
CLIENT: USER bob
SERVER: +OK bob
CLIENT: PASS redqueen
SERVER: +OK bob's maildrop has 2 messages (320 octets)
CLIENT: STAT
SERVER: +OK 2 320
CLIENT: LIST
SERVER: +OK 2 messages (320 octets)
SERVER: 1 120
SERVER: 2 200
SERVER: .
CLIENT: RETR 1
SERVER: +OK 120 octets
SERVER: <the POP3 server sends the text of message 1>
SERVER: .
CLIENT: DELE 1
SERVER: +OK message 1 deleted
CLIENT: RETR 2
SERVER: +OK 200 octets
SERVER: <the POP3 server sends the text of message 2>
SERVER: .
CLIENT: DELE 2
SERVER: +OK message 2 deleted
CLIENT: QUIT
SERVER: +OK dewey POP3 server signing off (maildrop empty)
CLIENT: <<client hangs up>>

182 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

POP3 – Client Commands

 Client commands always start with a 4 characters code

USER <username>
PASS <password>
STAT
LIST
RETR <message-id>
DELE <message-id>
QUIT

ג"תשע/אב/ז"כ

92

183 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

POP3 – Server Commands

 Server has only two response modes: +OK, -ERR

 Which are essentially “+” and “-”, where “OK” and “ERR”

are the “human parts”

 For some client commands, the server status line is

followed by data which ends with a single “.” line

+OK POP3 server ready <1896.6971@mailgate.dobbs.org>
+OK bob
+OK bob's maildrop has 2 messages (320 octets)
+OK 2 320
-ERR never heard of jim

http://www.pnambic.com/Goodies/POP3Ref.html

184 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol

A newer post office protocol designed in a

slightly different style

 IMAP was designed to replace POP3

Excellent example of a mature and powerful

design worth studying and following its principles

 In the next example, user ilanitk is logging to a

mail server to retrieve her email
(well, it’s not Ilanit who is doing it, it’s outlook or gmail client without her

knowing about it)

http://www.pnambic.com/Goodies/POP3Ref.html
http://www.pnambic.com/Goodies/POP3Ref.html
http://www.pnambic.com/Goodies/POP3Ref.html

ג"תשע/אב/ז"כ

93

185 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol
CLIENT: <<client connects to service port 143>>
SERVER: * OK iserver.com IMAP4rev1 v12.264 server ready
CLIENT: A001 USER "ilanitk" "june1987"
SERVER: * OK User ilanitk authenticated
CLIENT: A002 SELECT INBOX
SERVER: * 1 EXISTS
SERVER: * 1 RECENT
SERVER: * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
SERVER: * OK [UNSEEN 1] first unseen message in /var/spool/mail/dan
SERVER: A002 OK [READ-WRITE] SELECT completed
CLIENT: A003 FETCH 1 RFC822.SIZE Get message sizes
SERVER: * 1 FETCH (RFC822.SIZE 2545)
SERVER: A003 OK FETCH completed
CLIENT: A004 FETCH 1 BODY[HEADER] Get first message header
SERVER: * 1 FETCH (RFC822.HEADER {1425}
 <<server sends 1425 octets of message payload>>
SERVER:)
SERVER: A004 OK FETCH completed
CLIENT: A005 FETCH 1 BODY[TEXT] Get first message body
SERVER: * 1 FETCH (BODY[TEXT] {1120}
 <<server sends 1120 octets of message payload>>
SERVER:)
SERVER: * 1 FETCH (FLAGS (\Recent \Seen))
SERVER: A005 OK FETCH completed
CLIENT: A006 LOGOUT
SERVER: * BYE iserver.com IMAP4rev1 server terminating connection
SERVER: A006 OK LOGOUT completed
CLIENT: <<client hangs up>>

186 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol

 The standard IMAP procedure is to leave messages on

the server instead of retrieving copies

 Email is only accessible when "on-line” (from different

locations, and different devices)

 Suited to a world of “always-on/anywhere” connections

 Messages remain on the server, until deleted by the user

 Messages can be accessed by multiple client computers

 Clear advantage when you use more than one computer

to check your email (laptop, tablet, smartphone)

 Microsoft “MAPI” is a proprietary variation for their

outlook/exchange client/server model (does not work for

anything else)

ג"תשע/אב/ז"כ

94

187 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol

 IMAP uses the "Message Length in Advance Technique":

 instead of ending the payload with a dot, the payload

length is sent in advance

 This makes life harder on the server a little bit:

 messages have to be composed ahead of time

 messages cannot be streamed after the send

initiation

 But makes life easier for the client

 Client can know in advance storage and buffer sizes it

will need to process the message

188 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol

 Each response is tagged with a sequence label supplied

by the client

 In the example above they have the form A000n, but the

client could have generated any token into that slot

 This feature makes it possible for IMAP commands to be

streamed to the server without waiting for the responses

 A state machine in the client can then simply interpret the

responses and payloads as they come back

 This technique cuts down on latency

ג"תשע/אב/ז"כ

95

189 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

RFC – Request For Comments

 Protocol design life cycle starts with an RFC

 RFC’s are publications made by Internet Engineering

Task Force (IETF)

 IETF develops and promotes Internet standards

 Founded by the US government around 1969 (part of the

ARPANET project), but is now a very large international

organization with many sub-organizations (acm, IEEE)

 Official RFC’s database: http://www.rfc-editor.org/rfc.html

 For example, here is RFC 3501 (March 2003) for the

IMAP specifications:

http://www.rfc-editor.org/rfc/rfc3501.txt

http://www.rfc-editor.org/rfc/rfc4978.txt

 (read it and write a similar doc for BFTP …)

190 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

PARALLEL

PROGRAMMING

Adapted from David Beazley’s paper:

“An Introduction to Python Concurrency”

Presented at USENIX Technical Conference

San Diego, June, 2009

David Beazley: http://www.dabeaz.com

http://www.rfc-editor.org/rfc.html
http://www.rfc-editor.org/rfc.html
http://www.rfc-editor.org/rfc.html
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt

ג"תשע/אב/ז"כ

96

191 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Code Examples and Files

 Thanks Dave Beazley for contributing his fantastic set of

source code examples on Python concurrency and

parallel programming

 We have also added a few more examples and

rephrased Dave’s examples to suite our course

objectives

 Our source code repository can be retrieved from:
http://tinyurl.com/samyz/os/projects/PARALLEL_PROGRAMMING_LAB.zip

 Dave Beazley original resources can be retrieved from:

http://www.dabeaz.com/usenix2009/concurrent/

192 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Concurrent Programming

 Doing more than one thing at a time

 Writing programs that can work on more than one thing at a time

 Of particular interest to programmers and systems designers

 Writing code for running on “big iron”

 But also of interest for users of multicore desktop computers

 Goal is to go beyond the user manual and tie everything together

into a "bigger picture."

http://tinyurl.com/samyz/os/projects/PARALLEL_PROGRAMMING_LAB.zip
http://tinyurl.com/samyz/os/projects/PARALLEL_PROGRAMMING_LAB.zip
http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/

ג"תשע/אב/ז"כ

97

193 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Examples

 Web server that communicates with thousand clients (Google)

 Web client (Chrome or Firefox) that displays 10 or 20 tabs

 In the same process it may do the following tasks concurrently:

 Download several images, audio files, movies (concurrently)

 Display an image and a movie

 Connect to several servers

 Microsoft Word can do several tasks at the same time

 Let the user insert text with no waits or interrupts

 Download/upload stuff

 Backup the document every few seconds

 Check spelling and grammar (and even mark words as the user is

typing)

 Image processing software that uses 8 CPU cores for parallel

intense matrix multiplications

194 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multitasking

 Concurrency usually means multitasking

 If only one CPU is available, the only way it can run multiple tasks

is by rapidly switching between them in one of two way:

 Process context switch (two processes)

 Thread context switch (two threads in one process)

ג"תשע/אב/ז"כ

98

195 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Parallel Processing

 If you have many CPU’s or CORE’s then you can have true

parallelism: the two tasks run simultaneously

 If the total number of tasks exceeds the number of CPUs, then

some CPU’s must multitask (switch between tasks)

196 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Task Execution

 Every task executes by alternating between CPU processing and

I/O handling:

 disk read/write

 network send/receive

 For I/O, tasks must wait (sleep): the underlying system will carry

out the I/O operation and wake the task when it's finished

ג"תשע/אב/ז"כ

99

197 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

CPU Bound Tasks

 A task is "CPU Bound" if it spends most of its time processing with

little I/O

 Examples:

 Image processing

 Weather forecast system

 Heavy mathematical computations

198 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

I/O Bound Tasks

 A task is "I/O Bound" if it spends most of its time waiting for I/O

 Examples:

 Reading input from the user (text processors)

 Networking

 File Processing

 Most "normal" programs are I/O bound

ג"תשע/אב/ז"כ

100

199 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Shared Memory

 In many cases, two tasks need to share information (“cooperating

tasks”) and access an object simultaneously

 Two threads within the same process always share all memory of

that process

 Two independent processes on the other hand need special

mechanisms to communicate between them

200 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

IPC – Inter Process Communication

 Processes within a system may be independent or cooperating

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need inter-process communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

ג"תשע/אב/ז"כ

101

201 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Two Types of IPC

(a) Kernel shared memory: Pipe, Socket, FIFO, mailboxes

(b) Process shared memory (OS is not involved here!)

202 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

IPC – Inter Process Communication

 The simplest mechanism for two processes to communicate are

 Pipe

 FIFO

 Shared memory (memory mapped regions)

 Socket

 Processes can also communicate through the file system, but it

tends to be too slow and volatile (like suppose disk is full or bad)

ג"תשע/אב/ז"כ

102

203 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Distributed Computing

 Tasks may be running on distributed systems

 Sometimes on two different continents

 Cluster of workstations

 Usually: communication via sockets (or MPI)

204 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Programmer Performance

 Programmers are often able to get complex systems to "work" in

much less time using a high-level language like Python than if

they're spending all of their time hacking C code

 In some cases scripting solutions might be even competitive with

C++, C# and, especially, Java

 The reason is that when you are operating at a higher level, you

often are able to find a better, more optimal, algorithm, data

structures, problem decomposition schema, or all of the above

ג"תשע/אב/ז"כ

103

205 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Intel VLSI Tools as an Example

 In recent years, a fundamental transition has been occurring in the

way industry developers write computer programs

 The change is a transition from system programming languages

such as C or C++ to scripting languages such as Perl, Python,

Ruby, JavaScript, PHP, etc.

206 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Performance is Irrelevant!

 Many concurrent programs are "I/O bound“

 They spend virtually all of their time sitting around waiting for

 Clients to connect

 Client requests

 Client responses

 Python can "wait" just as fast as C

 One exception: if you need an extremely rapid response time as in

real-time systems

ג"תשע/אב/ז"כ

104

207 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

You Can Always Go Faster

Python can be extended with C code

Look at ctypes, Cython, Swig, etc.

 If you need really high-performance, you're not

coding Python -- you're using C extensions

This is what most of the big scientific computing

hackers are doing

 It's called: "using the right tool for the job"

208 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Process Concept Review

 A process (or job) is a program in execution

 A process includes:

1. Text (program code)

2. Data (constants and fixed tables)

3. Heap (dynamic memory)

4. Stack (for function calls and temporary variables)

5. Program counter (current instruction)

6. CPU registers

7. Open files table (including sockets)

 To better distinguish between a program and a
process, note that a single Word processor program
may have 10 different processes running
simultaneously

 Consider multiple users executing the same Internet
explorer (each has the 6 things above)

 Computer activity is the sum of all its processes

ג"תשע/אב/ז"כ

105

209 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Process States

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

210 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

CPU Process Scheduling

 Modern operating systems can run hundreds (and even thousands)

of processes in parallel

 Of course, at each moment, only a single process can control a

CPU, but the operating system is switching processes every 15

milliseconds (on average) so that at 1 minute, an operating system

can swap 4000 processes!

 The replacement of a running process with a new process is

generated by an INTERRUPT

ג"תשע/אב/ז"כ

106

211 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

THREADS

 What most programmers think of when they hear about

“concurrent programming”

 A Thread is an independent task running inside a program

 Shares resources with the main program (and other threads)

 Memory (Program text, Data, Heap)

 Files

 Network connections

 Has its own independent flow of execution

 Thread stack

 Thread program counter

 Thread CPU registers (context)

212 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

One Process, Many Threads!

TEXT (PROGRAM CODE)

DATA

HEAP (Dynamic Memory)

OPEN FILES TABLE

Program Counter

Stack

THREAD 1

Registers

Program Counter

Stack

THREAD 2

Registers

Program Counter

Stack

THREAD 3

Registers

Program Counter

Stack

THREAD 4

Registers

P
ro

c
e
s
s
 P

a
rt

s

ג"תשע/אב/ז"כ

107

213 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

THREADS
 Several threads within the same process can use and share

 common variables

 common open files

 common networking sockets

214 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threading Module

 Python threads are defined by a class

 You inherit from Thread and redefine run()

 def run(self):
 while self.count > 0:
 print "%s:%d" % (self.name, self.count)
 self.count -= 1
 time.sleep(2)
 return

This code

executes in

the thread

countdown1.py

ג"תשע/אב/ז"כ

108

215 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Launching a Thread

 To launch a thread: create a thread object and call start()

t1 = CountdownThread(10) # Create the thread object
t2 = CountdownThread(20) # Create another thread
t1.start() # Launch thread t1
t2.start() # Launch thread t2

 Thread executes until their run method stops (return or exit)

countdown1.py

216 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Alternative way to launch threads

import time
from threading import Thread

def countdown(name, count):
 while count > 0:
 print "%s:%d" % (name, count)
 count -= 1
 time.sleep(2)
 return

t1 = Thread(target=countdown, args=("A", 10))
t2 = Thread(target=countdown, args=("B", 20))
t1.start()
t2.start()

 Creates a Thread object, but its run() method just calls the

countdown function

countdown2.py

ג"תשע/אב/ז"כ

109

217 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Joining a Thread

t = Thread(target=foo, args=(N/2,))
t.start()
Do some work ...
t.join() # Wait for the thread to exit
Continue your work ...

 Once you start a thread, it runs independently

 Use t.join() to wait for a thread to exit

 This only works from other threads

 A thread can't join itself!

218 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Daemonic Threads

t.daemon = True
t.setDaemon(True)

 If a thread runs forever, make it "daemonic“

 If you don't do this, the interpreter will lock when the main

thread exits - waiting for the thread to terminate (which never

happens)

 Normally you use this for background tasks

ג"תשע/אב/ז"כ

110

219 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Access to Shared Data

 Threads share all of the data in your program

 Thread scheduling is non-deterministic

 Operations often take several steps and might be

interrupted mid-stream (non-atomic)

 Thus, access to any kind of shared data is also non-

deterministic

 (which is a really good way to have your head

explode)

220 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Accessing Shared Data

 Consider a shared object

 And two threads that modify it

 It's possible that the resulting value will be

unpredictably corrupted

x = 0

#Thread 1
x = x + 1

#Thread 2
x = x - 1

ג"תשע/אב/ז"כ

111

221 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Accessing Shared Data
 Is this a serious concern?

 YES! This is a dead serious matter!

 Look what happens in the following example !?

def foo():
 global x
 for i in xrange(1000000):
 x += 1

def bar():
 global x
 for i in xrange(1000000):
 x -= 1

t1 = Thread(target=foo)
t2 = Thread(target=bar)
t1.start()
t2.start() RACE_WARS/race_1.py

222 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

The Therac-25 Accidents
 Machine for radiation therapy

 Software control of electron accelerator and electron beam/Xray

production

 Software control of dosage

 Software errors caused the death of several patients

 A series of race conditions on shared variables and poor

software design

ג"תשע/אב/ז"כ

112

223 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Race Conditions

 The corruption of shared data due to thread

scheduling is often known as a "race condition."

 It's often quite diabolical - a program may produce

slightly different results each time it runs (even

though you aren't using any random numbers!)

 Or it may just flake out mysteriously once every two

weeks

224 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

THREADS – Summary (1)

 Threads are easier to create than processes:

 Threads do not require a separate address space!

 Multithreading requires careful programming!

 Threads share data structures that should only be modified

by one thread at a time! (mutex lock)

 A problem in one thread can

 Cause the parent process to block or crash

 and thus kill all other threads!

 Therefore a lot of caution must be taken so that different

threads don't step on each other!

ג"תשע/אב/ז"כ

113

225 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

THREADS – Summary (2)

 Unlike threads, processes do not share the same address

space and thus are truly independent of each other.

 Threads are considered lightweight because they use far

less resources than processes (no need for a full context

switch)

 Threads, on the other hand, share the same address

space, and therefor are interdependent

 Always remember the golden rules:

 Write stupid code and live longer (KISS)

 Avoid writing any code at all if you don’t have to!

(Bjarn Stroustrup, inventor of C++)

226 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Thread Synchronization

 Identifying and fixing a race condition will make you a

better programmer (e.g., it "builds character")

 However, you'll probably never get that month of your

life back …

 To fix : You have to synchronize threads

 Synchronization Primitives:

 Lock

 Semaphore

 BoundedSemaphore

 Condition

 Event

ג"תשע/אב/ז"כ

114

227 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Mutex Locks
 Probably the most commonly used synchronization primitive

 Mostly used to synchronize threads so that only one thread can

make modifications to shared data at any given time

 Has only two basic operations

from threading import Lock

m = Lock()
m.acquire()
m.release()

 Only one thread can successfully acquire the lock at any given

time

 If another thread tries to acquire the lock when its already in use,

it gets blocked until the lock is released

228 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Use of Mutex Locks

 Commonly used to enclose critical sections

 Only one thread can execute in critical section at a

time (lock gives exclusive access)

ג"תשע/אב/ז"כ

115

229 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Using a Mutex Lock

 It is your responsibility to identify and lock

all "critical sections“ !

230 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Lock Management

 Locking looks straightforward

 Until you start adding it to your code …

 Managing locks is a lot harder than it looks!

 Acquired locks must always be released!

 However, it gets evil with exceptions and other non-linear forms

of control-flow

 Always try to follow this prototype:

ג"תשע/אב/ז"כ

116

231 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Lock and Deadlock

 Avoid writing code that acquires more than one mutex

lock at a time

 This almost invariably ends up creating a program

that mysteriously deadlocks (even more fun to debug

than a race condition)

 Remember Therac-25 …

mx = Lock()
my = Lock()

mx.acquire()
statement using x
my.acquire()
statement using y
my.release()
...
mx.release()

232 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Semaphores

 A counter-based synchronization primitive

 acquire() - Waits if the count is 0, otherwise

decrements the count and continues

 release() - Increments the count and signals

waiting threads (if any)

 Unlike locks, acquire()/release() can be called in any

order and by any thread

from threading import Semaphore
m = Semaphore(n) # Create a semaphore
m.acquire() # Acquire
m.release() # Release

ג"תשע/אב/ז"כ

117

233 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Semaphores Uses

 Resource control: limit the number of threads

performing certain operations such as database

queries, network connections, disk writes, etc.

 Signaling: Semaphores can be used to send

"signals" between threads

 For example, having one thread wake up another

thread.

234 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Resource Control

 Using Semaphore to limit Resource:

 Only 5 threads can execute the get_link function

 This make sure we do not put too much pressure on

networking system

import requests
from threading import Semaphore

sem = Semaphore(5) # Max: 5-threads
def get_link(url):
 sem.acquire()
 try:
 req = requests.get(url)
 return req.content
 finally:
 sem.release()

ג"תשע/אב/ז"כ

118

235 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Thread Signaling

 Using a semaphore to “send a signal”:

 Here, acquire() and release() occur in different

threads and in a different order

 Thread-2 is blocked until Thread-1 releases “sem”.

 Often used with producer-consumer problems

sem = Semaphore(0)

Thread 1
...
statements
statements
statements
sem.release()
...

Thread 2
...
sem.acquire()
statements
statements
statements
...

236 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threads Summary

 Working with all of the synchronization primitives

is a lot trickier than it looks

 There are a lot of nasty corner cases and horrible

things that can go wrong

 Bad performance

 deadlocks

 Starvation

 bizarre CPU scheduling

 etc...

 All are valid reasons to not use threads, unless

you do not have a better choice

ג"תשע/אב/ז"כ

119

237 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threads and Queues

 Threaded programs are easier to manage if they can

be organized into producer/consumer components

connected by queues

 Instead of "sharing" data, threads only coordinate by

sending data to each other

 Think Unix "pipes" if you will...

Thread-1

Producer

Thread-3

Consumer

Thread-2

Consumer

Thread-4

Consumer

Queue

238 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Library Module

 Python has a thread-safe queuing module

 Basic operations

 Usage: Try to strictly adhere to get/put operations. If

you do this, you don't need to use other

synchronization primitives!

ג"תשע/אב/ז"כ

120

239 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Usage

 Most commonly used to set up various forms of

producer/consumer problems

 Critical point : You don't need locks here !!!

(they are already embedded in the Queue object)

240 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Producer Consumer Pattern
import time, Queue
from threading import Thread, currentThread

que = Queue.Queue()

def run_producer():
 print "I am the producer"
 for i in range(30):
 item = "packet_" + str(i) # producing an item
 que.put(item)
 time.sleep(1.0)

def run_consumer():
 print "I am a consumer", currentThread().name
 while True:
 item = que.get()
 print currentThread().name, "got", item
 time.sleep(5)

for i in range(10): # Starting 10 consumers !
 t = Thread(target=run_consumer)
 t.start()

run_producer()

Code:

producer_consumers_que.py

ג"תשע/אב/ז"כ

121

241 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Signaling

 Queues also have a signaling mechanism

 Many Python programmers don't know about this

(since it's relatively new)

 Used to determine when processing is done

242 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Programming

 There are many ways to use queues

 You can have as many consumers/producers as you

want hooked up to the same queue

 In practice, try to keep it simple !

ג"תשע/אב/ז"כ

122

243 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Task Producer

 Can be defined in a function or in a class

 Here is a simple one in a function

Keep producing unlimited number of tasks
Every task is pushed to a task_que

def task_producer(id, task_que):
 while True:
 a = random.randint(0,100) # random int from 0 to 100
 b = random.randint(0,100) # random int from 0 to 100
 task = "%d*%d" % (a,b) # multiplication task
 time.sleep(3) # 3 sec to produce a task
 task_que.put(task)
 print "Producer %d produced task: %s" % (id, task)

Code:

producer_consumer_1.py

244 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Worker (consumer)

 Can be defined in a function or in a class

 Here is a simple one in a function

Accepts unlimited number of tasks (from task_que)
It solves a task and puts the result in the result_que.

def worker(id, task_que, result_que):
 while True:
 task = task_que.get()
 t = random.uniform(2,3) # Take 2-3 seconds to complete a task
 time.sleep(t)
 answer = eval(task)
 result_que.put(answer)
 print "Worker %d completed task %s: answer=%d" % (id, task, answer)

Code:

producer_consumer_1.py

ג"תשע/אב/ז"כ

123

245 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Simulation: 2 producers, 3 workers

def simulation2():
 task_que = Queue()
 result_que = Queue()

 # Two producers
 p1 = Thread(target=task_producer, args=(1, task_que))
 p2 = Thread(target=task_producer, args=(2, task_que))

 # Three workers
 w1 = Thread(target=worker, args=(1, task_que, result_que))
 w2 = Thread(target=worker, args=(2, task_que, result_que))
 w3 = Thread(target=worker, args=(3, task_que, result_que))

 p1.start()
 p2.start()
 w1.start()
 w2.start()
 w3.start()
 # producers and workers run forever ...

Code: producer_consumer_1.py

246 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Performance Test

Code: threads_perf.py

ג"תשע/אב/ז"כ

124

247 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Performance Test

Code: threads_perf.py

248 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threads Summary (1)

 To understand why this is so and how to make better use of

threads, keep reading David Beazley Paper at:

http://www.dabeaz.com/usenix2009/concurrent/

 Threads are still useful for I/O-bound apps, and do save time in

these situations (which are more common than CPU-bound

apps)

 For example : A network server that needs to maintain several

thousand long-lived TCP connections, but is not doing tons of

heavy CPU processing

 Most systems don't have much of a problem -- even with

thousands of threads

http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/

ג"תשע/אב/ז"כ

125

249 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Threads Summary (2)

 If everything is I/O-bound, you will get a very quick response

time to any I/O activity

 Python isn't doing the scheduling

 So, Python is going to have a similar response behavior as a C

program with a lot of I/O bound threads

 Python threads are a useful tool, but you have to know how and

when to use them

 I/O bound processing only

 Limit CPU-bound processing to C extensions (that release the

GIL)

 To parallel CPU bound applications use Python’s

multiprocessing module … our next topic

250 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multi Processing

 An alternative to threads is to run multiple

independent copies of the Python interpreter

 In separate processes

 Possibly on different machines

 Get the different interpreters to cooperate by having

them send messages to each other

 Each instance of Python is independent

 Programs just send and receive messages

ג"תשע/אב/ז"כ

126

251 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Message Passing

 Two main issues:

 What is a message?

 What is the transport mechanism?

 A Message is just a bunch of bytes (buffer)

 A "serialized" representation of some data

 Could be done via files, but it’s very slow and volatile

252 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Message Transport

 Pipes

 Sockets

 FIFOs

 MPI (Message Passing Interface)

 XML-RPC (and many others)

ג"תשע/אב/ז"כ

127

253 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 1
 The bc.exe (Berkeley Calculator) performs Math much faster

than Python (think of it as a simple Matlab)

 bc.exe reads from stdin and writes to stdout

 It is included in the parallel programming code bundle

 Here is a bc program to calculate PI from term m to term n:

This is not Python! This is a bc code to
for the Gregory-Leibnitz series for of pi:
pi = 4/1 - 4/3 + 4/5 - 4/7 + ...

define psum(m,n) {
 auto i
 s=0
 for (i=m; i < n; ++i)
 s = s + (-1)^i * 4.0/(2*i+1.0)
 return (s)
}

254 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 1
import subprocess

code = """

 define psum(m,n) {

 auto i

 s=0

 for (i=m; i < n; ++i)

 s = s + (-1)^i * 4.0/(2*i+1.0)

 return (s)

 }

""" # This is code in a totally different language !

Starting a pipe to the bc.exe program

p = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)

Sending code to bc by writing to the Python side of the Pipe

p.stdin.write(code)

p.stdin.write("scale=60\n") # 60 digits precision

p.stdin.write("psum(0,1000000)\n") # Now we do the calculation!

result = p.stdout.readline() # Now we read the result!

p.terminate()

print result

IPC/pipe_to_bc_1.py

ג"תשע/אב/ז"כ

128

255 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 2
 If one sub-process gets us a lot of speed, how about opening

two sub-processes in parallel?

Starting two pipes to the bc.exe program!
p1 = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
p2 = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)

Sending code to bc by writing to the Python side of the Pipe
p1.stdin.write(code)
p2.stdin.write(code)
p1.stdin.write("scale=60\n") # 60 digits precision
p2.stdin.write("scale=60\n")

Now we do the calculation!
Both processes run in parallel in the background !
p1.stdin.write("psum(0,500000)\n") # We divide the task to two parts !
p2.stdin.write("psum(500000, 1000000)\n") # Part 2

result1 = p1.stdout.readline()
result2 = p2.stdout.readline()
p1.terminate()
p2.terminate()
print Decimal(result1) + Decimal(result2)

IPC/pipe_to_bc_2.py

256 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 3
 That worked all right, but if we want to use our 8 CPU cores, we

need to be more prudent!

def bc_worker(a,b):
 p = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
 p.stdin.write(code)
 p.stdin.write("scale=60\n") # 60 digits precision
 p.stdin.write("psum(%d,%d)\n" % (a,b))
 return p

8 parallel sums of 500K terms chunks ... (total 4M terms)
procs = []
chunk = 500000
for i in range(8):
 a = i * chunk
 b = (i+1) * chunk
 p = bc_worker(a,b)
 procs.append(p)

getcontext().prec = 60
result = Decimal("0.0")
for p in procs:
 r = p.stdout.readline()
 p.terminate()
 result += Decimal(r)

IPC/pipe_to_bc_3.py

ג"תשע/אב/ז"כ

129

257 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

The Big Picture
 Can easily have 10s-100s-1000s of communicating Python

interpreters and external programs through pipes and sockets

 However, always keep the “golden rules” in mind …

Python

Python Python

Python

b.exe

Python

f.exe

a.exe

c.exe
e.exe

d.exe

Golden rule: He who has the gold makes the rules

258 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

The Multiprocessing Module
 This is a module for writing concurrent programs based on

communicating processes

 A module that is especially useful for concurrent CPU-bound

processing

 Here's the cool part:

You already know how to us multiprocessing!

 It is exactly as using Threads, just replace “Thread” with

“Process”

 Instead of "Thread" objects, you now work with "Process"

objects

 But! One small difference: you need to use Queue’s for process

communication (or else you have independent processes with

no shared data at all)

ג"תשע/אב/ז"כ

130

259 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multiprocessing Example 1

import time, os
from multiprocessing import Process

print "Parent Process id:", os.getpid()

class CountdownProcess(Process):
 def __init__(self, name, count):
 Process.__init__(self)
 self.name = name
 self.count = count

 def run(self):
 print "Child Process id:", os.getpid()
 while self.count > 0:
 print "%s:%d" % (self.name, self.count)
 self.count -= 1
 time.sleep(2)

 return

countdownp1.py

 Define tasks using a Process class

 You inherit from Process and redefine run()

260 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multiprocessing Example 1

if __name__ == '__main__':
 p1 = CountdownProcess("A", 10) # Create the process object
 p1.start() # Launch the process

 p2 = CountdownProcess("B", 20) # Create another process
 p2.start() # Launch

countdownp1.py

 To launch, same idea as with threads

 You inherit from Process and redefine run()

 Processes execute until run() stops

 critical detail: Always launch in main as shown (or

else your Windows will crash)

ג"תשע/אב/ז"כ

131

261 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Multiprocessing Example 2

def countdown(name, count):
 print "Process id:", os.getpid()
 while count > 0:
 print "%s:%d" % (name, count)
 count -= 1
 time.sleep(2)
 return

Sample execution
if __name__ == '__main__':
 p1 = Process(target=countdown, args=("A", 10))
 p2 = Process(target=countdown, args=("B", 20))

 p1.start()
 p2.start()

countdownp2.py

 Alternative method of launching processes is by using simple

functions instead of classes

 Creates two Process objects, but their run() method just calls the

countdown function

262 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Does it Work ?

ג"תשע/אב/ז"כ

132

263 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Other Process Features

264 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Distributed Memory

 Unlike Threads, with multiprocessing, there are no

shared data structures, in fact no sharing at all !

 Every process is completely isolated!

 Since there are no shared structures, forget about all

of that locking business

 Everything is focused on messaging

http://fxa.noaa.gov/kelly/ipc/

http://fxa.noaa.gov/kelly/ipc/

ג"תשע/אב/ז"כ

133

265 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipes

266 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 1

 A simple data consumer

From multiprocessing import Process, Pipe

def consumer(p1, p2):
 p1.close() # Close producer's end (not used)
 while True:
 try:
 item = p2.recv()
 except EOFError:
 break
 print "Consumer got:", item

pipe_for_producer_consumer.py

 A simple data producer

def producer(outp):
 print "Process id:", os.getpid()
 for i in range(10):
 item = "item" + str(i) # make an item
 print "Producer produced:", item
 outp.send(item)

ג"תשע/אב/ז"כ

134

267 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 1

 Launching Consumer and Producer

 The consumer runs in a child process

 But the producer runs in the parent process

 Communication is from parent to child

if __name__ == '__main__':
 p1, p2 = Pipe()

 c = Process(target=consumer, args=(p1, p2))
 c.start()

 # Close the input end in the producer
 p2.close()

 run_producer(p1)

 # Close the pipe
 p1.close() pipe_for_producer_consumer.py

268 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Message Queues

ג"תשע/אב/ז"כ

135

269 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Queue Implementation

 Queues are implemented on top of pipes

 A subtle feature of queues is that they have a "feeder

thread" behind the scenes

 Putting an item on a queue returns immediately

 Allowing the producer to keep working

 The feeder thread works on its own to transmit data

to consumers

270 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Deadlocks

 Assume Alice wants to transfer money to Bob and at the

same time Bob wants to transfers money to Alice

 Alice's bank grabs a lock on Alice's account, then asks

Bob's bank for a lock on Bob's account

 Bob's bank locked Bob's account and is now asking for a

lock on Alice's account

 Bang! you have a deadlock!

http://www.eveninghour.com/images/online_transfer2.jpg

Code:

DEADLOCK/bank_account_1.py

DEADLOCK/bank_account_2.py

ג"תשע/אב/ז"כ

136

271 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers
 5 philosopher with 5 forks sit around a circular table

 The forks are placed between philosophers

 Each philosopher can be in one of three states:

 Thinking (job is waiting)

 Hungry (job ready to run)

 Eating (job is running)

 To eat, a philosopher must have two forks

 He must first obtain the first fork (left or right)

 After obtaining the first fork he proceeds to obtain the second fork

 Only after having two forks he is allowed to eat

 (The two forks cannot be obtained simultaneously!)

 Analogy: a process that needs to access two resources: a disk and

printer for example

Code: DEADLOCK/dining_philosophers.py

272 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Deadlock
 A Deadlock is a situation in which all 5 philosophers are hungry but

none can eat forever since each philosopher is waiting for a fork to be

released

 Sometimes this situation is called: full starvation

 In operating systems, a philosopher represents a thread or a process

that need access to two resources (like two files or a disc and printer)

in order to proceed

 Operating system puts every process into a device Queue each time it

needs to access a device (disc, memory, or CPU)

Code: DEADLOCK/dining_philosophers.py

Typical deadlock situation:

Each Philosopher grabbed

the left fork and waits for

the right fork

ג"תשע/אב/ז"כ

137

273 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Solution 1
 A philosopher who wants to eat first picks up the salt

shaker on the table

 Assume only one salt shaker exists!

 All other philosophers that do not have the salt

shaker must release their forks

 The philosopher that got the salt shaker picks up his

forks, eats and when finishes must put the salt

shaker back at the table center

 This solution works but is not optimal: only one

philosopher can eat at any given time

 if we further stipulate that the philosophers agree to

go around the table and pick up the salt shaker in

turn, this solution is also fair and ensures no

philosopher starves.

Code: DEADLOCK/dining_philosophers.py

274 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Solution 2
 Each philosopher flips a coin:

 Heads, he tries to grab the right fork

 Tails, he tries to grab the left fork

 If the second fork is busy, release the first fork and

try again

 With probability 1, he will eventually eat

 Again, this solution relies on defeating circular

waiting whenever possible and then resorts to

breaking 'acquiring while holding' as assurance for

the case when two adjacent philosophers' coins both

come up the same.

 Again, this solution is fair and ensures all

philosophers can eat eventually.

Code: DEADLOCK/dining_philosophers.py

ג"תשע/אב/ז"כ

138

275 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Solution 3
 The chef that cooked the meal dictates who should eat and

when to prevent any confusion. This breaks the 'blocking

shared resources' condition.

 The chef assures all philosophers that when they try to pick

up their forks, they will be free!

 Effectively the chef enforces a fair “fork discipline” over the

philosophers

 This is the most efficient solution (no shared

resources/locking involved) but is in practice the hardest to

achieve (the chef must know how to instruct the

philosophers to eat in a fair, interference-free fashion).

 For example, the chef can assign a number to each

philosopher and decide that the following pairs of

philosophers eat at the following order:

 (3, 5) -> (1, 4) -> (2, 4) -> (1, 3) -> (5, 2)

 This schedule ensures that each philosopher gets to eat

twice in each round and will neither deadlock nor starve

5

1

2

3 4

276 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers

Solution 3 Implementation

 A Python program model for the dining philosophers is

coded in the file:

 Based on this code, try to implement a Chef Thread which

monitors the 5 philosophers and solves the problem as

described above

 How to go about solution 2 ?

5

1

2

3 4

PARALLEL_PROGRAMMING_LAB/DEADLOCK/dining_philosophers.py

ג"תשע/אב/ז"כ

139

277 Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers: Solution 4
 Each philosopher behaves as usual. That is whenever it

gets hungry, he is trying to acquire the two forks as usual

(in whatever order he wants)

 Each Philosopher is assigned a “Hunger Index”

 This is roughly the time that has passed since he last ate

 As soon as the highest Hunger Index rises above a fixed

threshold, the neighbors of this philosopher must release

the forks near the starving philosopher (or complete their

food if they were eating and then release the forks)

 This guarantees that the starving philosopher will get to eat

in a short time.

 Once the starving philosopher is satiated, his “Hunger

Index” drops down below the next starving philosopher

 How would you implement this solution?

Start with the file:
PARALLEL_PROGRAMMING_LAB/DEADLOCK/dining_philosophers.py

43

23

315

136 78

