A Brief Python Tutorial

Sven H. Chilton
University of California - Berkeley

LBL Heavy lon Fusion Group Talk
16 August, 2007

Sven Chilton, 2007 A Brief Python Tutorial 1

Outline

Why Use Python?

Running Python

Types and Operators

Basic Statements

Functions

Scope Rules (Locality and Context)
Some Useful Packages and Resources

Sven Chilton, 2007 A Brief Python Tutorial 2

Why Use Python? (1)
Python is object-oriented
+Structure supports such concepts as polymorphism, operation overloading, and
multiple inheritance
It's free (open source)
+Downloading and installing Python is free and easy
+Source code is easily accessible
+Free doesn't mean unsupported! Online Python community is huge
It's portable
+Python runs virtually every major platform used today
+As long as you have a compatible Python interpreter installed, Python programs
will run in exactly the same manner, irrespective of platform
It's powerful
+Dynamic typing
+Built-in types and tools
sLibrary utilities
»Third party utilities (e.g. Numeric, NumPy, SciPy)
»Automatic memory management

Sven Chilton, 2007 A Brief Python Tutorial 3

Why Use Python? (2)

It's mixable
+Python can be linked to components written in other languages easily
+ Linking to fast, compiled code is useful to computationally intensive
problems
+ Python is good for code steering and for merging multiple programs
in otherwise conflicting languages
+Python/C integration is quite common
+*WARRP is implemented in a mixture of Python and Fortran
It's easy to use
+Rapid turnaround: no intermediate compile and link steps as in C or C++
+Python programs are compiled automatically to an intermediate form
called bytecode, which the interpreter then reads
»This gives Python the development speed of an interpreter without the
performance loss inherent in purely interpreted languages
It's easy to learn
»Structure and syntax are pretty intuitive and easy to grasp

Sven Chilton, 2007 A Brief Python Tutorial 4

Running Python (1)

In addition to being a programming language, Python is also an interpreter.

The interpreter reads other Python programs and commands, and executes them.
Note that Python programs are compiled automatically before being scanned into
the interpreter. The fact that this process is hidden makes Python faster than a
pure interpreter.

How to call up a Python interpreter will vary a bit depending on your platform, but
in a system with a terminal interface, all you need to do is type “python” (without
the quotation marks) into your command line.

Example:

From here on, the $ sign denotes the start of a terminal command line, and the

sign denotes a comment. Note: the # sign denotes a comment in Python. Python

ignores anything written to the right of a # sign on a given line

$ python # Type python into your terminal's command line

>>> # After a short message, the >>> symbol will appear. This signals
the start of a Python interpreter's command line

Sven Chilton, 2007 A Brief Python Tutorial 5

Running Python (2)

Once you're inside the Python interpreter, type in commands at will.

Examples:

>>> print 'Hello world'

Hello world

Relevant output is displayed on subsequent lines without the >>>
symbol

>>> x = [0,1,2]

Quantities stored in memory are not displayed by default

>>> x

If a quantity is stored in memory, typing its name will display it
[0,1,2]

>>> 243

5

>>> # Type ctrl-D to exit the interpreter

$

Sven Chilton, 2007 A Brief Python Tutorial 6

Running Python (3)

Python scripts can be written in text files with the suffix .py. The scripts
can be read into the interpreter in several ways:

Examples:

S python script.py

This will simply execute the script and return to the terminal afterwards
$ python -1 script.py

The -i flag keeps the interpreter open after the script is finished running
S python

>>> execfile('script.py')

The execfile command reads in scripts and executes them immediately,
as though they had been typed into the interpreter directly

S python

>>> import script # DO NOT add the .py suffix. Scriptis a module
here

The import command runs the script, displays any unstored outputs, and
creates a lower level (or context) within the program. More on contexts
later.

Sven Chilton, 2007 A Brief Python Tutorial 7

Running Python (4)
Suppose the file script.py contains the following lines:
print 'Hello world'
x = [0,1,2]
Let's run this script in each of the ways described on the last slide:

Examples:

S python script.py

Hello world

$

The script is executed and the interpreter is immediately closed. xis
lost.

$ python -i script.py

Hello world

>>> x

[0,1,2]

>>>

“Hello world” is printed, x is stored and can be called later, and the

interpreter is left open
Sven Chilton, 2007 A Brief Python Tutorial 8

Running Python (5)

Examples: (continued from previous slide)
S python
>>> execfile('script.py')
Hello world
>>> x
[0,1,2]
>>>
For our current purposes, this is identical to calling the script from the
terminal with the command python -i script.py
$ python
>>> import script
Hello world
>>> x
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name 'x' is not defined
>>>
When script.py is loaded in this way, x is not defined on the top level

Sven Chilton, 2007 A Brief Python Tutorial 9

Running Python (6)
Examples: (continued from previous slide)
to make use of x, we need to let Python know which module it came
from, i.e. give Python its context
>>> script.x
[0,1,2]
>>>
Pretend that script.py contains multiple stored quantities. To promote X
(and only x) to the top level context, type the following:
S python
>>> from script import x
Hello world
>>> x
[0,1,2]
>>>
To promote all quantities in script.py to the top level context, type
from script import * into the interpreter. Of course, if that's what
you want, you might as well type python -i script.py into the
terminal.
Sven Chilton, 2007 A Brief Python Tutorial 10

Types and Operators: Types of Numbers (1)

Python supports several different numeric types

Integers

+Examples: 0, 1, 1234, -56

+Integers are implemented as C longs

+Note: dividing an integer by another integer will return only the integer
part of the quotient, e.g. typing 7/2 will yield 3

Long integers

+Example: 9999999999999999999991,

+Must end in either 1 or L

+Can be arbitrarily long

Floating point numbers

+Examples: 0., 1.0, 1el0, 3.14e-2, 6.99E4
+Implemented as C doubles

+Division works normally for floating point numbers: 7./2. = 3.5
+Operations involving both floats and integers will yield floats:

6.4 - 2 = 4.4

Sven Chilton, 2007 A Brief Python Tutorial 11

Types and Operators: Types of Numbers (2)

Other numeric types:

Octal constants

+Examples: 0177, -01234

+Must start with a leading 0

Hex constants

+Examples: 0x9ff, OX7AR

+Must start with a leading 0x or 0X
Complex numbers

+Examples: 3+43, 3.0+4.0j, 2J
+Mustendin jorJ

+Typing in the imaginary part first will return the complex number in the
order Re+ImJ

Sven Chilton, 2007 A Brief Python Tutorial 12

Types and Operators: Operations on Numbers
Basic algebraic operations
+Four arithmetic operations: a+b, a-b, a*b, a/b
+Exponentiation: a* *b
+Other elementary functions are not part of standard Python, but included
in packages like NumPy and SciPy
Comparison operators
+Greater than, less than, etc..a < b, a > b, a <= b, a > b
+ldentity tests:a == b, a !=Db
Bitwise operators
+Bitwiseor:a | b
+Bitwise exclusive or: a ~ b # Don't confuse this with exponentiation
+Bitwise and: a & b
+Shift a left or right by b bits: a << b, a >> b
Other
+Not surprisingly, Python follows the basic PEMDAS order of operations
+Python supports mixed-type math. The final answer will be of the most

complicated type used.
Sven Chilton, 2007 A Brief Python Tutorial 13

Types and Operators: Strings and Operations
Thereon
Strings are ordered blocks of text
+Strings are enclosed in single or double quotation marks
+Double quotation marks allow the user to extend strings over multiple
lines without backslashes, which usually signal the continuation of an
expression
+Examples: 'abc', “ABC”
Concatenation and repetition
+Strings are concatenated with the + sign:
>>> 'abc'+'def!
'abcdef!
+Strings are repeated with the * sign:
>>> 'abc'*3
'abcabcabc!

Sven Chilton, 2007 A Brief Python Tutorial 14

Types and Operators: Indexing and Slicing (1)

Indexing and slicing

+Python starts indexing at 0. A string s will have indexes running from 0 to
len (s) -1 (where len (s) isthe length of s) in integer quantities.

+s[1i] fetches the ith elementin s

>>> s = 'string'
>>> s[1] # note that Python considers 't ' the first element
e # of our string s

+s[i:7] fetches elements i (inclusive) through j (not inclusive)
>>> s[1:4]

'tri!

+s [:7j] fetches all elements up to, but not including j

>>> s[:3]

'str!

+s[1:] fetches all elements from i onward (inclusive)

>>> s[2:]

'ring'

Sven Chilton, 2007 A Brief Python Tutorial 15

Types and Operators: Indexing and Slicing (2)

Indexing and slicing, contd.

+s[i:7:k] extracts every kth element starting with index i (inlcusive)
and ending with index j (not inclusive)

>>> 5[0:5:2]

'srn'

+Python also supports negative indexes. For example, s[-1] means
extract the first element of s from the end (same as s[len (s) -11])
>>> s[-1]

g

>>> s[-2]

Ty

+Python's indexing system is different from those of Fortan, MatLab, and
Mathematica. The latter three programs start indexing at 1, and have
inclusive slicing, i.e. the last index in a slice command is included in the
slice

Sven Chilton, 2007 A Brief Python Tutorial 16

Types and Operators: Lists

Basic properties:

+Lists are contained in square brackets []

+Lists can contain numbers, strings, nested sublists, or nothing
+Examples: 1.1 = [0,1,2,3], L2 = ['zero', 'one'],
L3 = [0,1,[2,3], 'three', ['four,one']], L4 = []
+List indexing works just like string indexing

+Lists are mutable: individual elements can be reassigned in place.
Moreover, they can grow and shrink in place

+Example:

>>> L1 = [0,1,2,3]

>>> L1[0] = 4

>>> L1[0]

4

0
0

Sven Chilton, 2007 A Brief Python Tutorial 17

Types and Operators: Operations on Lists (1)

Some basic operations on lists:
+Indexing: L1[i], L2[i][7]
+Slicing: L3[i:7]
+Concatenation:

>>> L1 = [0,1,2]; L2 = [3,4,5]
>>> L1412

[0,1,2,3,4,5]

+Repetition:

>>> L1*3
(0,1,2,0,1,2,0,1,2]
+Appending:

>>> Ll.append(3)
[0,1,2,3]

+Sorting:

>>> L3 = [2,1,4,3]

>>> L3.sort ()

[1,2,3,4]

Sven Chilton, 2007 A Brief Python Tutorial 18

Types and Operators: Operations on Lists (2)

More list operations:
+Reversal:

>>> L4 = [4,3,2,1]
>>> L4.reverse ()

>>> L4

[1,2,3,4]

+Shrinking:

>>> del L4[2]

>>> Lx[i:3] = []
+Index and slice assignment:
>>> L1[1] =1

>>> L2[1:4] = [4,5,6]
+Making a list of integers:
>>> range (4)
[0,1,2,3]

>>> range(1l,5)
[1,2,3,4]

Sven Chilton, 2007 A Brief Python Tutorial 19

Types and Operators: Tuples

Basic properties:

+Tuples are contained in parentheses ()

+Tuples can contain numbers, strings, nested sub-tuples, or nothing
+Examples:t1 = (0,1,2,3), t2 = ('zero', 'one'),

t3 = (0,1, (2,3), "three', ('four,one')), t4d = ()

+As long as you're not nesting tuples, you can omit the parentheses
Example:t1 = 0,1,2,3isthesameastl = (0,1,2,3)

+Tuple indexing works just like string and list indexing

+Tuples are immutable: individual elements cannot be reassigned in place.
+Concatenation:

>>> tl = (0,1,2,3); t2 = (4,5,06)

>>> t1+t2

(0,1,2,3,4,5,6)

+Repetition:

>>> t£1*2

(0,1,2,3,0,1,2,3)

+Length: 1en (t1) (this also works for lists and strings)

Sven Chilton, 2007 A Brief Python Tutorial 20

Types and Operators: Arrays (1)

Note: arrays are not a built-in python type; they are included in third-party
packages such as Numeric and NumPy. However, they are very useful to
computational math and physics, so | will include a discussion of them here.

Basic useage:

+Loading in array capabilities: # from here on, all operations involving arrays
assume you have already made this step

>>> from numpy import *

+Creating an array:

>>> vec = array([1,2,3])

+Creating a 3x3 matrix:

>>> mat = array([[1,2,3]1,14,5,61,17,8,911)

+If you need to initialize a dummy array whose terms will be altered later, the
zeros and ones commands are useful; zeros ((m, n), 'typecode") will
create an m-by-n array of zeros, which can be integers, floats, double precision
floats etc. depending on the type code used

Sven Chilton, 2007 A Brief Python Tutorial 21

Types and Operators: Arrays (2)

Arrays and lists have many similarities, but there are also some important
differences

Similarities between arrays and lists:

+Both are mutable: both can have elements reassigned in place

+Arrays and lists are indexed and sliced identically

+The 1en command works just as well on arrays as anything else
+Arrays and lists both have sort and reverse attributes

Differences between arrays and lists:

+With arrays, the + and * signs do not refer to concatenation or repetition
+Examples:

>>> arl = array([2,4,6])

>>> arl+2 # Adding a constant to an array adds the constant to each
term

[4,6,8,] #inthe array

>>> arl*2 # Multiplying an array by a constant multiplies each term in
[4,8,12,]1 #the array by that constant

Sven Chilton, 2007 A Brief Python Tutorial 22

Types and Operators: Arrays (3)
More differences between arrays and lists:
+Adding two arrays is just like adding two vectors

>>> arl = array([2,4,6]); ar2 = array([1,2,3])
>>> arl+ar?
[3,6,9,]

+Multiplying two arrays multiplies them term by term:

>>> arl*ar2

[2,8,18,]

+Same for division:

>>> arl/ar2

[2,2,2,]

+Assuming the function can take vector arguments, a function acting on an array
acts on each term in the array

>>> ar2**2

[1,4,9,]

>>> ar3 = (pi/4)*arange (3) # like range, but an array

>>> sin(ar3)

[O. , 0.70710678, 1. 1

Sven Chilton, 2007 A Brief Python Tutorial 23

Types and Operators: Arrays (4)
More differences between arrays and lists:
+The biggest difference between arrays and lists is speed; it's much faster to carry
out operations on arrays (and all the terms therein) than on each term in a given
list.
Example: take the following script:
ttl = time.clock()
sarr = l.*arange(0,10001)/10000;

sinarr = sin(sarr)
tt2 = time.clock ()
slist = []; sinlist = []

for i in range(10001):

slist.append(1.*1/10000)

sinlist.append(sin(slist[i]))
tt3 = time.clock()
Running this script on my system shows that tt2-tt1 (i.e., the time it takes to
set up the array and take the sin of each term therein) is 0.0 seconds, while tt3-
tt2 (the time to set up the list and take the sin of each term therein) is 0.26
seconds.

Sven Chilton, 2007 A Brief Python Tutorial 24

Types and Operators: Mutable vs. Immutable Types (1)

Mutable types (dictionaries, lists, arrays) can have individual items reassigned in
place, while immutable types (numbers, strings, tuples) cannot.

>> L = [0,2,3]
>>> L[0] = 1
>>> L

[1,2,3]

>>> s = 'string'
>>> s[3] = 'o!

Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object does not support item assignment
However, there is another important difference between mutable and immutable
types; they handle name assignments differently. If you assign a name to an
immutable item, then set a second name equal to the first, changing the value of
the first name will not change that of the second. However, for mutable items,
changing the value of the first name will change that of the second.
An example to illustrate this difference follows on the next slide.

Sven Chilton, 2007 A Brief Python Tutorial 25

Types and Operators: Mutable vs. Immutable Types (2)

Immutable and mutable types handle name assignments differently
>>> a = 2

>>> b = a # a and b are both numbers, and are thus immutable
>>> a = 3

>>> b

2

Even though we set b equal to a, changing the value of a does not change the
value of b. However, for mutable types, this property does not hold.

>>> La = [0,1,2]

>>> Lb = La # Laand Lb are both lists, and are thus mutable
>>> La = [1,2,3]

>>> Tb

[1,2,3]

Setting Lb equal to La means that changing the value of La changes that of Lb.
To circumvent this property, we would make use of the function copy.copy ().
>>> La = [0,1,2]

>>> Lb = copy.copy (La)

Now, changing the value of La will not change the value of Lb.

Sven Chilton, 2007 A Brief Python Tutorial 26

Basic Statements: The If Statement (1)

If statements have the following basic structure:

inside the interpreter # inside a script
>>> if condition: if condition:
action action

>>>

Subsequent indented lines are assumed to be part of the if statement. The same
is true for most other types of python statements. A statement typed into an
interpreter ends once an empty line is entered, and a statement in a script ends
once an unindented line appears. The same is true for defining functions.

If statements can be combined with else if (elif) and else statements as follows:

if conditionl: # if conditionl is true, execute actionl
actionl

elif condition2: # if conditionl is not true, but condition2 is, execute
action? # action2

else: # if neither condition1 nor condition2 is true, execute
action3 # action3

Sven Chilton, 2007 A Brief Python Tutorial 27

Basic Statements: The If Statement (2)

Conditions in if statements may be combined using and & or statements
if conditionl and condition2:

actionl
if both condition1 and condition2 are true, execute actionl
if conditionl or condition2:

action?2
if either condition1 or condition2 is true, execute action2
Conditions may be expressed using the following operations:
<, <=, >, >=, ==, !=, in
Somewhat unrealistic example:
>> x = 2; y=3; L = [0,1,2]
>>> if (1<x<=3 and 4>y>=2) or (1l==1 or 0!=1) or 1 in
L:

print 'Hello world'

Hello world
>>>

Sven Chilton, 2007 A Brief Python Tutorial 28

Basic Statements: The While Statement (1)

While statements have the following basic structure:

inside the interpreter # inside a script
>>> while condition: while condition:
action action
>>>
As long as the condition is true, the while statement will execute the action
Example:

>>> x =1
>>> while x < 4: #aslongasx<4...
print x**2 # print the square of x

x = x+1 #increment x by +1
1 # only the squares of 1, 2, and 3 are printed,
because
4 # once x = 4, the condition is false
9
>>>
Sven Chilton, 2007 A Brief Python Tutorial 29

Basic Statements: The While Statement (2)

Pitfall to avoid:

While statements are intended to be used with changing conditions. If the
condition in a while statement does not change, the program will be stuck
in an infinite loop until the user hits ctrl-C.

Example:
>>> x = 1
>>> while x == 1:
print 'Hello world'

Since x does not change, Python will continue to print “Hello world” until
interrupted

Sven Chilton, 2007 A Brief Python Tutorial 30

Basic Statements: The For Statement (1)

For statements have the following basic structure:
for item i in set s:

action on item i
item and set are not statements here; they are merely intended to clarify
the relationships between iand s
Example:
>>> for i in range(1l,7):

print i, i**2, i**3, i**4

111
4 8 16
9 27 81
16 64 256
25 125 625

36 216 1296
>>>

oY U W N e

Sven Chilton, 2007 A Brief Python Tutorial 31

Basic Statements: The For Statement (2)

The item i is often used to refer to an index in a list, tuple, or array
Example:
>>> 1L = [0,1,2,3] #or, equivalently, range(4)
>>> for i in range (len(L)):
L[{i] = L[i]**2
>>> L
[0,1,4,9]
>>>
Of course, we could accomplish this particular task more compactly using
arrays:
>>> L = arange (4)
>>> L = L**2
>>> L
[0,1,4,9,]

Sven Chilton, 2007 A Brief Python Tutorial 32

Basic Statements: Combining Statements

The user may combine statements in a myriad of ways

Example:
>>> L = [0,1,2,3] #or, equivalently, range(4)
>>> for i in range (len(L)):

3= 1i/2.

if j - int(j) == 0.0:

L[i] = L[i]+1

else: L[i] = —1i**2
>>> 1
[1,-1,3,-9]
>>>
Sven Chilton, 2007 A Brief Python Tutorial 33

Functions (1)

Usually, function definitions have the following basic structure:
def func(args):
return values
Regardless of the arguments, (including the case of no arguments) a
function call must end with parentheses.
Functions may be simple one-to-one mappings
>>> def fl(x):
return x*(x-1)
>>> f£1(3)
6
They may contain multiple input and/or output variables
>>> def f2(x,y):
return x+y,x-y

>>> £2(3,2)
(5,1)

Sven Chilton, 2007 A Brief Python Tutorial 34

Functions (2)

Functions don't need to contain arguments at all:
>>> def £3():
print 'Hello world'

>>> £3()
Hello world
The user can set arguments to default values in function definitions:
>>> def f4(x,a=1):
return a*x**2
>>>
If this function is called with only one argument, the default value of 1 is
assumed for the second argument
>>> 4 (2)
4
However, the user is free to change the second argument from its default
value

>>> f4(2,a=2) # £4(2,2) would also work
$ven Chilton, 2007 A Brief Python Tutorial 35

Functions (3)

Functions need not take just numbers as arguments, nor output just numbers or
tuples. Rather, they can take multiple types as inputs and/or outputs.
Examples:
>>> arr = arange (4)
>>> f4 (arr,a=2) # usingthe same f4 as on the previous slide
[0,2,8,18,]
>>> def f£5(func, list, x):

L = 1]

for i in range(len(list)):

L.append (func(x+1list[i]))
arr = array (L)
return L,arr

>>> L1 = [0.0,0.1,0.2,0.3]
>>> L,arr = f5(exp,L11,0.5)
>>> arr

[1.64872127, 1.8221188 , 2.01375271, 2.225540093,]
Note: the function above requires Numeric, NumPy, or a similar package

Sven Chilton, 2007 A Brief Python Tutorial 36

Functions (4)

Anything calculated inside a function but not specified as an output
quantity (either with return or global) will be deleted once the function
stops running
>>> def f5(x,vy):

a = xty

b = x-y

return a**2,b**2

>>> £5(3,2)
(25,1)
If we try to call a or b, we get an error message:
>>> a
Traceback (most recent call last):
File "<stdin>", line 1, in °?
NameError: name 'a' is not defined
This brings us to scoping issues, which will be addressed in the next

section.

Sven Chilton, 2007 A Brief Python Tutorial 37

Functions: Getting Help

If you forget how to use a standard function, Python's library utilities can help.

Say we want to know how to use the function execfile (). In this case,
Python's help () library functions is extremely relevant.
Usage:

>>> help (execfile)

don't include the parentheses when using the function name as an argument
Entering the above into the interpreter will call up an explanation of the function,
its usage, and the meanings of its arguments and outputs. The interpreter will
disappear and the documentation will take up the entire terminal. If the
documentation takes up more space than the terminal offers, you can scroll
through the documentation with the up and down arrow keys. Striking the g key
will quit the documentation and return to the interpreter.

WARP has a similar library function called doc (). Itis used as follows:

>>> from warp import *

>>> doc (execfile)

The main difference between help () and doc () is that doc () prints the relevant
documentation onto the interpreter screen.

Sven Chilton, 2007 A Brief Python Tutorial 38

Scope Rules (1)

Python employs the following scoping hierarchy, in decreasing order of
breadth:
o Built-in (Python)

o Predefined names (len, open, execfile, etc.) and types
o Global (module)

o Names assigned at the top level of a module, or directly in the

interpreter

o Names declared global in a function
o Local (function)

o Names assigned inside a function definition or loop

Example:
>>> g = 2 # a is assigned in the interpreter, so it's global
>>> def f(x): # x iIs in the function's argument list, so it's local

y = x+a #yisonly assigned inside the function, so it's local
return y # usingthe sa

>>>

Sven Chilton, 2007 A Brief Python Tutorial 39

Scope Rules (2)
If a module file is read into the interpreter via execfile, any quantities defined in the
top level of the module file will be promoted to the top level of the program
As an example: return to our friend from the beginning of the presentation,
script.py:
print 'Hello world'
x = [0,1,2]
>>> execfile('script.py"')
Hello world
>>> X
[0,1,2]
If we had imported script.py instead, the list x would not be defined on the top
level. To call x, we would need to explicitly tell Python its scope, or context.
>>> import script
Hello world
>>> script.x
[0,1,2]
As we saw on slide 9, if we had tried to call x without a context flag, an error
message would have appeared

Sven Chilton, 2007 A Brief Python Tutorial 40

Scope Rules (3)
Modules may well contain submodules. Say we have a file named
module.py which, in its definition, imports a submodule named submodule,
which in turn contains some quantity named x.
>>> import module
If we load the module this way, we would type the following to call x:
>>> module.submodule.x
We can also import the submodule without importing other quantities
defined in module.py:
>>> from module import submodule
In this case, we would type the following to call x:
>>> submodule.x
We would also call x this way if we had read in module.py with
execfile ()

Sven Chilton, 2007 A Brief Python Tutorial 41

Scope Rules (4)
You can use the same names in different scopes
Examples:
>>> a = 2
>>> def f5(x,vy)
a = x+y #this a has no knowledge of the global a, and vice-versa
b = x-y
return a**2,b**2
>>> a
2
The local a is deleted as soon as the function stops running
>>> x = 5
>>> import script # same script as before
Hello world

>>> X

5

>>> script.x # script.x and x are defined in different scopes, and
[0,1,2] # are thus different

Sven Chilton, 2007 A Brief Python Tutorial 42

Scope Rules (5)

Changing a global name used in a function definition changes the function
Example:
>>> a = 2
>>> def f (x):
return x+a # this function is, effectively, f(x) = x+2
>>> £ (4)
6
>>> a = 1
>>> f(4) # since we set a=1, f(xX) = x+1 now
5
Unlike some other languages, Python function arguments are not modified
by default:
>>> x = 4
>>> f (x)
5
>>> x
4
Sven Chilton, 2007 A Brief Python Tutorial 43

Some Useful Packages and Resources

Useful packages:

o Numeric — good for numerical algebra, trigonometry, etc. CAUTION: no longer
supported

o NumPy — similar to Numeric, but handles arrays slightly differently and has a
few other built-in commands and functions

o SciPy — useful for numerical integration, ODE solutions, interpolations, etc.:

based on NumPy

Books:

Learning Python, Mark Lutz & David Ascher, O'Reilly Press, 1999

Programming Python, Mark Lutz, O'Reilly Press, 2006

Core Python Programming (2" Edition), Wesley J. Chun, Prentice Hall, 2006

Websites:

O o o o

o

- online version of built-in Python function documentation
- Python Quick Reference Card
- long version of Python Quick Reference Card
- extensive Python forum

0O 0 0 O

Sven Chilton, 2007 A Brief Python Tutorial 44

http://docs.python.org/
http://laurent.pointal.org/python/pqrc
http://rgruet.free.fr/
http://mail.python.org/

