A"ywun/an/t™>

31666

Spring 2013, Ort Braude College
Electrical Engineering Department

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 1 1

Course Program

Lecturer: Dr. Samy Zafrany
Credits: 5.0
Hours: 3 lecture, 2 laboratory

Grade Composition:
® 20% - mid-term exam
o 30% - laboratory projects
o 50% - final exam
B Prerequisites: 31616 (Programming)

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 2

A"ywun/an/t™>

Course Web Site

This is a temporary location until we move
To the college Moodle system

Slides and most figures and images are based
on the Slides of Tanenbaum Book:

Computer Networks, Fourth Edition,
Andrew S. Tanenbaum, Prentice Hall 4t
Edition, Teacher Complimentary Materials

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Course Description

m Client/server application architecture

Interface, Protocols, Basic Networking Concepts (TCP/IP, UDP) and
basic networking tools

Socket programming

Internet, WWW, SQL, and client/server systems

Multitasking, multithreading, and distributed programming
Database systems, distributed systems, distributed programming
Client technologies, languages and tools

Server technologies, languages and tools

Security and social issues of client/server systems.

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

http://tinyurl.com/samyz/cliserv/index.html
http://tinyurl.com/samyz/cliserv/index.html
http://tinyurl.com/samyz/cliserv/index.html
http://tinyurl.com/samyz/cliserv/index.html
http://tinyurl.com/samyz/cliserv/index.html

A"ywun/an/t™>

Course Outline

m Client/Server systems overview: www client/server, email, ftp, File Server (NFS),
DBMS, SQL, RPC

m Networking concepts: protocols, TCP/IP, UDP, MIME, POP, SMTP, DNS, HTML,
HTTP, XML

Networking concepts: OSI model

Operating systems, processes, and threads Overview. Multithreading models.
Threading issues.

Socket Programming. Synchronous vs. Asynchronous socket calls.
Networking testing tools: ping, nslookup, ipconfig, traceroute, netstat

Distributed system structures. Network Structure. Network Topologies.
Communication Structure. Communication Protocols.

m Client/Server system design: chat client/server, simple DBMS client/server, Poker
game client/server

m Client/Server system implementation: chat client/server, simple DBMS client/server,
Poker game client/sever

m Communication Security. Social issues. Cryptography. SSL.

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Lab Projects

® Multi processing and multithreading (parallel programming)

m File system search/indexing using single process, multiple
processes, and multithreading

Client communication with server

Multiple clients communicating with server (Chat server, simple
DBMS, Poker game server)

RPC client/server
Implement a simple distributed parallel algorithm

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

A"ywun/an/t™>

Expected Learning Outcomes

m Students will get familiar with basic networking concepts, the basic

structure and organization of networking

m Common types of networking paradigms, and common Internet

applications and protocols

m Particular emphasis will be put on the prevalent client/server model,

and its associated parallel programming computing methods

® Multitasking, multithreading, and distributed programming
m Ability to apply solid engineering principles and methods in building

network-aware applications.

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Bibliography
Silberschatz and Galvin. Operating Systems Concepts. 8th edition,
2008, John Wiley & Sons, Inc.

Andrwes S. Tanenbaum. Computer Networks, 5th Edition, 2010,
Prentice Hall.

W. Richard Stevens, Bill Fenner, Andrew Rudoff. UNIX network
programming, 3™ edition, 2003, Prentice Hall.

Allen B. Downey. Think Python, O’Reilly 2012,

Mark Pilgrim. Dive into Python, Apress 2004,

John Goerzen, Brandon Rhodes. Foundations of Python Network
Programming. 2" Edition, 2010, Apress.

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

http://www.greenteapress.com/thinkpython
http://www.diveintopython.net/
http://www.python.org/

A"ywun/an/t™>

Software

® All needed software should be downloaded from

B Into a personal flash drive (diskonkey)
e atleas 2GB drive is needed

m All software can be executed from the flash drive on any standard
Windows PC

B So you can do all your coding work at home and everywhere you
have an access to a windows PC

® We may however need a session or two in the College Linux labs

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 9

Computer Networks

B The old model of a single computer serving all of the organization’s
computational needs has been replaced by one in which a large number of
separate but interconnected computers do the job.

B ‘““‘computer network’ is a collection of autonomous computing devices
interconnected by a single technology
m Connection is achieved by:
e Copper wires (Ethernet cables)
e Fiber optics
e Microwaves
e |Infrared,
e Communication satellites
B Computing devices: personal computers, tablets, smart phones, routers,

blade servers, car controllers, televisions, refrigerators, cameras, ewatches,
hard drive controllers, robot systems (unmanned aerial vehicle), etc.

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 10

https://dl.dropbox.com/u/60773652/PYTHON/index.html
https://dl.dropbox.com/u/60773652/PYTHON/index.html
https://dl.dropbox.com/u/60773652/PYTHON/index.html

A"ywun/an/t™>

Goals of Networking

B Resource and load sharing and balancing

Programs do not need to run on a single machine

Files can span several disks (even on different continents — Hadoop)
Reduced cost

Several machines can share printers, tape drives, etc.

B Reliability & Redundancy:
e If a machine goes down, another takes over
e |If afile or disk is damaged, data can be recovered
B Social Connectivity: mail, chat, messages, video, multimedia business,
games, recreation (YouTube, Facebook, Twitter, Steam)

B Business applications: DB sharing, e-commerce, m-commerce (Amazon,
eBay), Banking, Stock market, Sensor networks

Mobile applications: tablets, smart phones, VOIP

Scientific applications
e knowledge bases
e distributed computing
e shared information systems, telelearning (education)

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

11

Computer Network & Distributed System

® In a distributed system, a collection of independent computers
appears to its users as a single coherent system.

B In a computer network, users are exposed to the actual machines

e If the machines have different hardware and different operating
systems, that is fully visible to the users

e If a user wants to run a program on a remote machine, he has to log
onto that machine and run it there.

m |n effect, a distributed system is a software system built on top of a
network

m A well-known example of a distributed system is the World Wide
Web. It runs on top of the Internet and presents a model in which
everything looks like a document (Web page).

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

12

A"ywun/an/t™>

Client-Server System

B network architecture in which two computers are connected in such a way
that one computer (the client) sends service requests to another computer
(the server).

Examples: WWW, Email, Waze

Usually, the server is a powerful computer to which many less powerful
personal computers or workstations (clients) are connected. The clients run
programs and access data that are stored on the server.

m Usually on distant locations but can be also on the same machine

| | Client

Client Server Programming - 13

Client Server Data Flow
The client-server model involves requests and replies.

Client machine Server machine
Request
——
Network ”Q
~_ |
7 %
Reply \
Client process Server process

Client Server

Operating Operating
System System

LAN driver LAN driver

AN AN
WAN/Internet
S (Fouter) (Fouter) (Router >/
Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 14

A"ywun/an/t™>

Client Server Programming

Peer-to-Peer System

In peer-to-peer system there are no fixed clients and servers

Any node can be sometimes a client and sometimes a server

Examples: Napster, Kazaa, Emule, BitTorrent (content exchange)

DEC president, Ken Olsen, 1977: “There is no reason for any individual
to have a computer in his home.”

e Digital Equipment Corporation no longer exists

- Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

15

Some forms of e-commerce

Tag Full name Example

B2C | Business-to-consumer Ordering books on-line

B2B | Business-to-business Car manufacturer ordering tires from supplier
G2C | Government-to-consumer | Government distributing tax forms electronically
C2C | Consumer-to-consumer | Auctioning second-hand products on-line

P2P | Peer-to-peer File sharing

Client Server Programming

- Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

16

A"ywun/an/t™>

Network Hardware

m Personal Area Networks (PAN)

m Local Area Networks (LAN)

m Metropolitan Area Networks (MAN)
®m Wide Area Networks (WAN)

m Wireless Networks (LAN/WiFi)

® Home Networks (LAN/WiFi)

®m Internetworks

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

17

Networks Classification

m Network are usually classified according to transmission
technology and Scale

m there are two types of transmission technology that are
in widespread use:

e broadcast links
e point-to-point links.

B Broadcast network: the communication channel is
shared by all the machines on the network; packets sent
by any machine are received by all the others

B Point-to-point network: shortest routes between two
peers are used for communications

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

18

A"ywun/an/t™>

10

Interconnected Processors by Scale

Interprocessor Processors Example
distance located in same
im Square meter Personal area network
10m Room
100 m Building Local area network
1 km Campus
10 km City Metropolitan area network
100 km Country
- Wide area network
1000 km Continent
10,000 km Planet The Internet

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

19

Personal Area Network (PAN)

-
ib g
2

(a) Wired connection
(b) Bluetooth configuration
(c) Wireless connection

(a) Wireless keyboard/mouse/headset
(b) Wireless Printers
(c) External disks

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

20

11

A"ywun/an/t™>

Local Area Network (LAN)

@“ ?@3 o

Cable \

Computer

(@)

Two broadcast networks
(@) Bus
(b) Ring

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

21

Wireless and wired LANs

Access | To wired network Ethernet
Ports switch To rest of
=] network

Wireless LAN: IEEE 802.11 (WiFi)
(a) 1-100 Mbps, 10 Ghps
(b) Coper wires, optical fibers
- faster than wireless LAN
(c) 802.3 (Ethernet) most popular LAN

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

22

A"ywun/an/t™>

12

Flying LAN

Flying router

i

Portable Wi red

One telephone compier LAN

call per computer
(a) (b)

Individual mobile computers
Tablets, smartphones
Other small factor devices

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

23

Metropolitan Area Networks (MAN)

oo
Ll
CLLI.

Antenna

Head end

Internet
\

(a) A metropolitan area network based on cable TV
(b) New MAN: IEEE 802.16 (WiMax)
- Worldwide Interoperability for Microwave Access
(c) Related standards: GSM, 3G (3 generation of mobile technology)

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

24

A"ywun/an/t™>

13

Wide Area Networks (WAN)

R

A
Subnet

Transmission \

e __ma=smTITTIOIITTTAS

WAN that connects three branch offices in Australia

Transmission lines: copper, optical fiber, radio links

Switching elements: computers that connect two or more
transmission lines (routers) - internetworks

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

25

Wide Area Networks (WAN)

Subnet Router

T T rTT

Host

TP rink ol

Relation between hosts on LANs and the subnet.

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

26

A"ywun/an/t™>

14

Wide Area Networks (2)

Router Subnet
Sending host / Receiving host

QL

Sending process

Router C makes a Recei \
choice to forward |eelving process

packets to E and
notto D

Packet

A stream of packets from sender to receiver.

Client Server Programming - Slide Figures /quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 27

Network Software

® Communication Protocol Hierarchies

m Design Issues for the Layers (OSI Model)

m Connection-Oriented and Connectionless Services
m Service Primitives

®m The Relationship of Services to Protocols

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 28

A"ywun/an/t™>

15

Protocol Hierarchies

m “Abstraction—the hiding of details behind a well-defined interface—is the
fundamental tool used by system designers to manage complexity”
Larry L. Peterson and Bruce S. Davie, Computer Networks

® To reduce design complexity networks are organized as a stack of layers

B The purpose of each layer is to offer certain services to the higher layers
while shielding those layers from the details of how the offered services are
actually implemented

B AKA: information hiding, abstract data types, data encapsulation, and object-
oriented programming

B Conversation between layer n on one machine with layer n on another
machine: the rules and conventions used in this conversation are collectively
known as the layer n protocol

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 29

Layers, protocols, and interfaces

Host 1 Host 2

Layer 5 protocol
Layer5 |[w-—-—------—-————————- +| Layer 5

Layer 4/5 interface

-
o
<
]
IS
=
=4
5]
5]
=X

Layer 4 |=-—-—------—m oo | Layer 4
Layer 3/4 interface
Layer 3 |[w-—-—--Z--— e ——— »{ Layer 3
Layer 2/3 interface
Layer2 jw——————-——— -~ »| Layer 2
Layer 1/2 interface

Layer{ j=———----nmr =| Layer 1

-
o
<
]
o
=
=4
9
5]
[=X

,_

o

<
]
w

=
=4
5]
5]
=X

Physical medium

Real data is transfered only at the physical layer!
All other dotted lines are virtual!

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 30

A"ywun/an/t™>

16

Network Architecture

B A set of layers and protocols is called a network architecture

m Neither the details of the implementation nor the specification of the
interfaces is part of the architecture

m A list of the protocols used by a certain system, one protocol per layer, is
called a protocol stack

m Typical flow:

+ A message, M, is produced by an application process running in layer 5 and
given to layer 4 for transmission

+ Layer 4 puts a header in front of the message to identify the message and
passes the result to layer 3

+ The header includes control information, such as address/port, to allow layer 4
on the destination machine to deliver the message

+ Other examples of control information used in some layers are sequence
numbers, sizes, and times

+ layer 3 must break up the incoming messages into smaller units, packets,
prepending a layer 3 header to each packet

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 31

Communication Flow

Layer 3

|
poed] [

Layer 2

Source machine Destination machine

O Layer 3 decides which lines to use and passes the packets to layer 2

0O Layer 2 adds to each piece not only a header but also a trailer, and gives the resulting unit to
layer 1 for physical transmission

O At the receiving machine the message moves upward, from layer to layer, with headers being
stripped off as it progresses

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 32

A"ywun/an/t™>

17

Communication Protocol

Definition 1: A protocol is an agreement between the communicating parties
on how communication is to proceed

Definition 2: A protocol is a set of communication "rules" between two
processes.

Example: A "grades database query" protocol
+ (We may make a small project out of it later ...)

Server
~N

Y

Client: HELLO i Server: READY
Client: NAME 051883261\n @ Server: DAN HACKER\n
Client: GRADE MATH\n i Server: 87\n

Client: GRADE HISTORY\n ! Server: 93\n

Client: END Server: BYE

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

33

OSI| Model

B Open Systems Interconnection (OSI)

m Proposed by the International Standards Organization (ISO)

m The OSI model has seven layers

Host Layers

Media Layers

OSI MOde| Sender Receiver
Data Layer
(osta | egRet
Network Process to
mmm Application Application
Data ; Session Presentation Presentation
Session Sesslon

Transport

w emﬂ?&so&?..r&m Transport
and Reliability
Packets [paz!.\‘rﬁevrvm%';l&n)
and IP (Logical Addressing)
Frames ?a%a..';i&':(
(Phyiscal)

M/E/S/SIAG/E LS

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

34

http://www.google.co.il/url?sa=i&rct=j&q=osi layers&source=images&cd=&cad=rja&docid=bUi84FniHG-VJM&tbnid=SlWdpXG4MsKViM:&ved=0CAUQjRw&url=http://aninditablog.wordpress.com/2012/04/19/osi-layer-model/&ei=Ki4UUY34OZKLhQfG1oCYDQ&bvm=bv.42080656,d.ZG4&psig=AFQjCNGHTT3-iwjAEe6PxnA5ZgM6mfxfbQ&ust=1360363408136181
http://www.google.co.il/url?sa=i&rct=j&q=networks are organized as a stack of layers&source=images&cd=&cad=rja&docid=BdhtqyJqJtVtzM&tbnid=Ju2lsh36mQIGpM:&ved=0CAUQjRw&url=http://support.novell.com/techcenter/articles/ana19921103.html&ei=X2cZUbCwMoeZhQeZooGQDw&bvm=bv.42080656,d.ZG4&psig=AFQjCNEzttEA-OFZLb1XZDZ95eJ35WZQIg&ust=1360705538628295

A"ywun/an/t™>

18

Application Layer

B The closest layer to the user: Outlook, Explorer, Firefox, Skype (HTTP, POP,
SMTP, FTP, TELNET).

m In this layer that a user interacts with the software application that does data
transfer

B The main tasks:
+ Identify/authenticate the user who wants to communicate
+ determine whether the data and networks sources are available
+ synchronize communication between the two nodes

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

35

Presentation Layer

m Convert the data into a format that could be easily recognized by the
application layers of other end users.

B For example: translation between ASCII and EBCDIC machines as well as
between different floating point and binary formats. Integer size (16,32, or 64
bit?). Floating point representations.

B Compression/decompression, conversion, encryption/decryption, coding,
decoding, etc.

m Converts the data obtained from the application layer into a format that can
be easily identified by other network layers.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

36

A"ywun/an/t™>

19

Session Layer

In practice, this layer is often not used or services within this layer are
sometimes incorporated into the transport layer

Establishing, maintaining and terminating the connection between two end
nodes (not used in TCP/IP)

Controls the communication between the source user and the destination
user and also decides the time of communication

It determines one-way or two-way communications and manages the dialog
between both parties; for example, making sure that the previous request
has been fulfilled before the next one is sent

Any error report related to application layer, presentation layer and session
layer, are provided by this layer

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

37

Transport Layer

Responsible for delivering the data or the messages between the two nodes
Divide the data in packets at the sender side
Re-assemble packets at the receiver side
Third task: error free data transmission
+ Uses checksums for error correction or rejection
+ Drop corrupt packets and requests retransmission
Fourth task: guarantee data integrity
+ Make sure all packets have arrived

UDP, SPX, TCP are some of the protocols that operate on this layer with
one exception: UDP is unreliable

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

38

A"ywun/an/t™>

20

Network Layer

Provide switching technologies and routing technologies:
It is the network layer's job to figure out the network topology, handle routing
and to prepare data for transmission

Establishes the route between the sending and receiving nodes for data
transmission (also known as virtual circuits)

B Encapsulation of transport data into network layer protocol data units
B Also responsible for handling errors, packet sequencing, controlling network

congestion and addressing

In short: this layer is responsible for the setting up the required network for
transferring data from one node to other.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 39

Data Link Layer

Encoding and decoding of data frames into bits (as the physical layer may
use waves or other type of media). At the receiving side: Collects a stream
of bits into a larger aggregate called a frame.

Segmentation of upper layer datagrams (packets) into frames in sizes that
can be handled by the communications hardware

Takes care of any errors in the physical layer (electricity presence, voltage
drop, no power, connection, etc.)

m Provides reliable transit of the data through a physical network
B Synchronization of various physical devices that will transmit the data
| |t makes sure that the frames are transferred in correct order and asks for

retransmission in case of error

The frame formatting issues such as stop and start bits, bit order, parity and
other functions are handled here. Management of big-endian/little-endian
issues are also managed at this layer.

Usually implemented on Hardware (network interface card):

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 40

A"ywun/an/t™>

21

Physical Layer

Deals with the physical components of a network

m Activation, maintenance and deactivation of various physical links that act in
data transmission

m Electrical signals, voltage levels, cables, data transmission rates, etc., are
some of the major elements defined by the physical layer

| |t is also responsible for passing and receiving bytes from the physically
connected medium

m Implemented on hardware (network interface card)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

41

Information Flow

Layer
5 Il_________f?z’%'_%?’_°_“i‘i°_' ________ "
. g Layer4protocol | R W
‘/\ Layer 3 /
s Fulte)e " R[]]
Layer 2
protocol
2[Ho[Hs[Ha[My [To] * [Ho[Hs] Mo [Tp]<------- ~[He[Ho[Ha[M1 [To| [Ha[Hs[Mo [T
1
Source machine Destination machine

The peer processes in layer 4 (for example) conceptually think of their

communication as being “horizontal,” using the layer 4 protocol

Each one is likely to have procedures called something like SendToOtherSide and GetFrom-
OtherSide, even though these procedures actually communicate with lower layers

across the 3/4 interface, and not with the other side.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

42

A"ywun/an/t™>

22

Design Issues - Accuracy

B Packet traveling through the network: there is a chance that some bits will be
flipped, or even get lost, or new ones will be added:

+ fluke electrical noise
+ random wireless signals
+ hardware flaws
+ software bugs (and soon ...)
m |s it possible to detect and even fix these errors?
B Must separate between two targets:
m Error Detection
+ Easy mechanisms for detecting errors (with very high probability)
B Error Correction
+ This is possible but very costly (space, time, resources)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

43

Design Issues - Reliability

®m Finding a working path through a network:

+ Usually there are multiple paths between a source and
destination

® |n a large network, there may be broken links, hosts, and routers

m [f the network is down in Germany: packets sent from London to
Rome via Germany will not get through, but packets from London to
Rome via Paris may get through ... ?

® A network should automatically detect the problem and make this
decision. This topic is called routing. How this is done? We’'ll see
later ...

® Not all communication channels preserve the order of packets sent
on them, and packets can also get completely lost

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

44

A"ywun/an/t™>

23

Design Issues - Flow Control

B Congestion: how to keep a fast sender from swamping a slow receiver?

m Overloading of the network is called congestion: too many computers want
to send too much traffic, and the network cannot deliver it all

B One strategy is for each computer to reduce its demand when it experiences
congestion

B Starvation: fast receivers against slow senders (fast clients vs. slow server)

m Quality of service is the name given to mechanisms that reconcile these
competing demands

B Applications: video streaming, VOIP, media recorders (“buffer overrun”)
+ Balancing senders and receivers speeds in such cases is very crucial

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

45

Design Issues — Security

m Network must be secured by defending it against different kinds of
threats:

m Confidentiality: prevent unauthorized access to information
(snooping)

B Authentication: prevent someone from impersonating someone
else (Phishing)

B [ntegrity: prevent surreptitious changes to messages:

“debit my account $10” > “debit my account $1000”
m Solution designs are heavily based on cryptography

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

46

A"ywun/an/t™>

24

Connection-Oriented and Connectionless

-
Service Example
: Reliable message stream Sequence of pages
Connection-) 9 4 bad
oriented Reliable byte stream Remote login
Unreliable connection Digitized voice
N
i
Unreliable datagram Electronic junk mail
Connection- ; ;
l6as 3 Acknowledged datagram Registered malil
Request-reply Database query
~
Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 47

Connection-Oriented

B Connection is established, the sender, receiver, and subnet conduct a
negotiation about the parameters to be used, such as

+ Maximum message size
+ Quality of service required, and other issues

m Typically, one side makes a proposal and the other side can accept it, reject
it, or make a counter proposal.

B A circuit is another name for a connection with associated resources (after
the telephone model ...)

B Reliability: do not lose data — e.g., the receiver acknowledge the receipt of
each message

B so the sender is sure that it arrived
B TCP - Transmission Control Protocol is connection oriented
B Text documents, email, image attachments

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 48

A"ywun/an/t™>

25

Connectionless Service

In contrast to connection-oriented service, connectionless service is
modeled after the postal system

Each message (letter/package) carries the full destination address
and each one is routed through the intermediate nodes inside the
system independent of all the subsequent messages

UDP — User Datagram Protocol — unreliable

Unreliable (meaning not acknowledged) connectionless service is
often called datagram service, in analogy with telegram (service,
which also does not return an acknowledgement to the sender)

Video streaming, Video conference, VOIP, Digital TV transmission
(Idan+)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

49

Co-existence of both kinds

reliable communication may not be available in a given layer

For example, Ethernet does not provide reliable communication.
Packets can occasionally be damaged in transit

It is up to higher protocol levels to recover from this problem. In
particular, many reliable services are built on top of an unreliable
datagram service. Second,

Both reliable and unreliable communication usually coexist.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

50

A"ywun/an/t™>

26

Connection-oriented Service Primitives

Primitive Meaning
LISTEN Block waiting for an incoming connection
CONNECT Establish a connection with a waiting peer
RECEIVE Block waiting for an incoming message
SEND Send a message to the peer
DISCONNECT | Terminate a connection

0O Minimal example of service primitives that provide a reliable byte stream

0O Aservice is formally specified by a set of primitives (operations) available to user processes
to access the service

0 These primitives tell the service to perform some action or report on an action taken by a
peer entity (usually as operating system calls)

0O Modeled after the Berkeley socket interface

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

51

Service Primitives (2)

LISTEN is usually implemented by a block system call - the server process
is blocked until a request for connection appears

B CONNECT is usually implemented by a connection request to a server
+ The CONNECT call may need to specify the server’s address

+ The operating system then typically sends a packet to the peer asking it
to connect

B The client process is suspended until there is a response

m When the packet arrives at the server, the operating system sees that the
packet is requesting a connection

+ It checks to see if there is a listener

+ If so it unblocks the listener (wake-up call)

+ The server process may accept the connection with the ACCEPT call
B This sends a response back to the client process to accept the connection

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

52

A"ywun/an/t™>

27

Service Primitives (3)

m Next step: RECEIVE
+ The server prepares to accept the first client request
+ The RECEIVE call blocks the server

m Then the client executes SEND to transmit its request (data or action)
followed by the execution of RECEIVE by the server (and then blocks)

B The arrival of the request packet at the server machine unblocks the server
so it can handle the request

B After it has done the work, the server uses SEND to return the answer to the
client

B The arrival of this packet unblocks the client, which can now inspect the
answer. If the client has additional requests, it can proceed immediately.

m When the client is done, it executes DISCONNECT to terminate the
connection. Usually, a DISCONNECT is a blocking call, suspending the
client and sending a packet to the server saying that the connection is no
longer needed

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

53

Service Primitives (4)

m When the server gets the client disconnect packet, it also issues a server
DISCONNECT of its own, acknowledging the client and releasing the
connection

m When the server’s packet gets back to the client machine, the client process
is released and the connection is broken

® |n a nutshell, this is how connection-oriented communication works:

Client machine Server machine
(1) Connect request
Client\ (2) ACK
process
\ (3) Request for data ;??c::/g;s
System (4) Reply
calls ’
; (5) Disconnect
Operating Protocol | .. _ Protocol |
system{ Kemel stk Drivers (6) Disconnect Kernel e Drivers

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

54

A"ywun/an/t™>

28

The TCP/IP Reference Model

m TCP is Transmission Control Protocol.
m |P is Internet Protocol.
m Only 4 layers:

1 Application Layer

2 Transport Layer

3 Internet Layer

4 Link Layer (network)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

55

The Tanenbaum Reference Model

m The model used in Tanenbaum book adds a
Physical layer (page 48). Also used by others.

m But we will stick to the official TCP/IP model since
the physical layer is out of the course scope

1 Application Layer
Transport Layer
Internet Layer

Link Layer (network)

o b~ W DN

Physical Layer

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

56

A"ywun/an/t™>

29

Layer 4: The Application Layer

m Higher-level protocols such as: TELNET, FTP,
SMTP, DNS, HTTP, POP2, POP3.

m These are the protocols that are used by
applications like MS internet explorer, Google
Chrome, MS outlook, Skype, Waze, etc.

m This layer is essentially the same as the OSI
Model layer 7

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 57

Layer 3: The Transport Layer
(TCP / UDP)

m This layer implements layers 4, 5, and 6 of the OSI model
(session, presentation, and transport)

m Handles full messages (long documents, multimedia, etc.)

m Nevertheless, in many cases OSI layer 6 makes sense
(encryption, compression, data representation) and used
in analysis

m The most used protocols are: TCP, UDP (but there are
additional 15 new ones)

m Usually implemented at the operating system kernel (Unix
and Windows) (why?)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 58

A"ywun/an/t™>

30

Layer 2: The Internet Layer
(IP)

m Connectionless internetwork layer (IP Protocol)

m Packet-switching: blocks of data constrained to a fixed size

m permitting hosts to send packets into any network and
have them travel independently to the destination,
potentially on a different network.

m Implemented at the operating system, at routers hardware,
gateways, bridges, etc.

m A computer can act sometimes as a router or a gateway,
so the operating system includes special modules to
handle network operations

m Major interface: SEND_IP_PACKET, RECEIVE_IP_PACKET

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

59

Layer 1: Link/network Layer
(Ethernet/wireless)

m Almost everything below the internet layer is not defined in
the TCP/IP reference model

m The network layer essentially performs the functions of the
OSI physical and data link layers

m Usually implemented by network device drivers: Ethernet,
Ring or Star card drivers (with the help of the device
drivers of course)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

60

A"ywun/an/t™>

31

OSI| and TCP/IP Reference Models

oSl
Application
Presentation
Session
Transport
Network
Link
Physical

P N W s~ 01 OO N

TCP/IP
Application

Transport
Internet

Link/Network

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

61

TCP/IP Family

m TCP/IP refers to an entire communication protocol family based on the

+ Transmission Control Protocol (TCP)

+ The Internet Protocol (IP)

m |t defines protocols at the network layer and the transport layer

® The TCP/IP suite has six basic elements:

*

Applications

*

*

*

The Internet Protocol (IP)

*

The Transmission Control Protocol (TCP)
The User Datagram Protocol (UDP)

Auxiliary protocols like the Internet Control, Message Protocol

(ICMP), and the Address Resolution Protocol (ARP).

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

62

A"ywun/an/t™>

32

TCP/IP Family: IP

m I[P major role is to route packets from a process in one machine to
another process at another machine (possibly the same machine)

B For that IP uses an IP address and a Port number

+ The port number determines the specific process to which the
packet belongs

® When an application sends a data packet to another machine
+ |IP determines to which network the packet should go
+ if necessary, IP routes the packet from one network to another

m |P figures out where to send a packet based on the IP address of the
recipient

m At some hops, IP may fragment a large packet to smaller packets
(“fragments”) if that network cannot handle large packets (link with a
smaller MTU - maximum transmission unit)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

63

Internet: Collection of Subnetworks

Leased lines Leased A European backbone
to Asia A U.S. backbone transatlantic

Regional
network

IP Ethernet IP Ethernet
LAN IP token ring LAN LAN

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

64

A"ywun/an/t™>

33

The IP Protocol

m Packet delivery service (host-to-host).
m |P provides connectionless, unreliable delivery of IP

datagrams.

®m Connectionless: each datagram is independent of all

others.

m Unreliable: there is no guarantee that datagrams are

delivered correctly or at all.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

65

IP Addressing (v4)

Every host on the internet is assigned a unique IP
address which consists of 32 bits.

Example:
[[GEEEEEES 22 il co=oooc >
address = 11000111110010111001100000001010
The IP address consists of two parts: Network ID + Host ID

1-8 9-16 17-24 25-32

Class A onnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh 0-127
Class B: 1@nnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh 128-191
Class C: 11@nnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh 192-223
Class D: 1110mmmm.mmmmmmmm.mmmmmmmm.mmmmmmmm 224-239
Class E 11110rrr.rrerereee.rreereeer.rereereer 240-247

n = network bit
h = host bit
m = multicast

Iy reserved for future use

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

66

A"ywun/an/t™>

IP Addressing (v4)

Example:
| €------- 32 bits ------- >
address = 11000111110010111001100000001010

Every IP address belongs to a network class and consists
of two parts:
[Network ID] + [Host ID]

|<---mmmn-- 24 bit = -------- >|<- 8 bit ->|
|<---mmmn-- Network ID -------- >|<-Host ID->|

11000111110010111001100000001010

Subnet mask:

111111111111117171717111111111100001010
255.255.255.0

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IP Addressing (v4)

The algorithm to determine the address class is as follows:

Class A: ©@nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh 0-127

Class B: 1@nnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh 128-191

Class C: 11@nnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh 192-223

Class D: 1110mmmm.mmmmmmmm.mmmmmmmm.mmmmmmmm 224-239

Class E: 1111@rrr.rrrrreerer.reeereeree.rerereeeerer 240-247

Class A 0.0.0.0 -- 127.255.255.255 127 Networks of size=16M
Class B 128.0.0.0 -- 191.255.255.255 16K Networks of size=64K
Class C 192.0.0.0 -- 223.255.255.255 2M Networks of size=256
Class D 224.0.0.0 -- 239.255.255.255

Class E 240.0.0.0 -- 247.255.255.255 Reserved

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

34

A"ywun/an/t™>

35

IP Addressing (v4)

m A Network ID is assigned to an organization by a global authority
(ICANN - Internet Corporation for Assigned Names and Numbers)

®m Host IDs are assigned locally by a system administrator or
automatically by a DHCP server

m Both the Network ID and the Host ID are used for routing

m Very few organizations are assigned Class A addresses (USA
military, government, Boing, large banks, ...)

+ But they do not use all possible host ids

B Many universities and companies were assigned class B addresses,
but most of them do not use more than 1000 or 2000 host ids (out of
the 64K possible host ids).

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 69

IP Addresses

®m An IP address is assigned per network interface,
not host!

m So a host that belongs to two networks must
have two network interfaces and thus two IP
addresses!

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 70

A"ywun/an/t™>

36

EXAMPLE

B The IP number of Netanya College Linux mail server,
moon.netanya.ac.il is a 32 bits binary integer:

11000111110010111001100000001010
m |t is better viewed 4 bytes:
11000111.11001011.10011000.00001010
m Even better as: 199.203.152.6

B Since it starts in "110" it is a class C address, and therefore its
network maskis: 11111111.11111111.11111111.00000000

B The network number is 199.203.152.0.
B Broadcast address is 199.203.152.255.
B Broadcast mask is 255.255.255.255.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 71

The IP Datagram Structure

HEADER

DATA

B Header length is 20 bytes minimum and 60 bytes maximum

B Packet size can range from 40 bytes to 64K bytes depending on
networking software and networking hardware

B The data part is usually a small fragment of the total message which the
TCP (or UDP) protocol is trying to transmit

B TCP and UDP are the drivers of the IP protocol

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 72

A"ywun/an/t™>

37

The IP Datagram Header (v4)

32 Bits
IllIlllllIlllll[lllllllllllllllll
Version ‘ IHL | Type of service ,7 Total length
Identification | E ‘ ’g| Fragment offset
Time to live | Protocol Header checksum
Source address
Destination address
:l: Options (0 or more words) T
B Has a 20 bytes fixed part and a variable length optional part
m Version — IP Protocol Version (v4, v5, v6)
m |HL — (4 bits) The number of 32-bit words in the header (min=5W,
max=15W). That is, the header can be at most 60 bytes!
B Total Length - total length of the datagram in bytes

+ size of the data = total length - header length"

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

73

Type of service
(also called: Differentiated Services)

32 Bits
Lo v v v v v v by IR B R R
Version [IHL I Type of service Total length
Identification '—I E[’;_f Fragment offset
Time to live | Protocol Header checksum

Source address

Destination address

m Consists of 6 bits: Options (0 or more words)

+ 1000 - minimize delay

+ 0100 - maximize throughput

¢ 0010 - maximize reliability

+ 0001 - minimize monetary cost

+ The other two bits used to record congestion history but now used for VOIP
m This is a "hint" to the physical layer to which path to use

m Not supported in most implementations. Some implementations have extra fields
in the routing table to indicate delay, throughput, reliability, and monetary cost.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

74

A"ywun/an/t™>

Identification

32 Bits
| 1 | | 1 1 1 1 | | | | 1 1 1 1 | 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1
Version ’ IHL JI Type of service | Total length
& Identiﬁcatior) ‘E’m Fragment offset
Time to live Protocol Header checksum

Source address

Destination address

:|: Options (0 or more words) T

Uniquely identifies the datagram
Usually incremented by 1 each time a new datagram is sent

+ Puts a max limit on packet sequence: 2716 * (packet_length) ~ 4G
All fragments of a datagram contain the same identification value

This allows the destination host to determine which fragment belongs to which
datagram

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 75

32 Bits

FLAGS Lo v v by v b v L v
Version [IHL [Typeolsewice Total length

—~

Identification —[E | hé I) Fragment offset

Time to live ‘ Protocol Header checksum

Source address

Destination address

Options (0 or more words)

Used for fragmentation

DF means “do not fragment”

+ lItis arequest to routers not to fragment the datagram since the
destination is incapable of putting the pieces back together

+ Can be use for MTU detection
® MF means “more fragments to follow”
+ All fragments except the last one have this bit set!
+ Itis needed to know if all fragments of a datagram have arrived

B The bit to the left of DF is still unused ... (electrical waste ...)
+ Required to be 0
Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 76

38

A"ywun/an/t™>

39

T BIS
Lo v by v v v b v by
F rag ment 0 l I set Version ‘ IHL | Type of service Total length
Identification ‘ 2 ‘ @mem offset
Time to live | Protocol Header checksum

Initial state: fragment offset=0, MF=0

Source

address

Destination address

=

Options (0 or more words)

A router may divide a packet to small fragments, if next hop MTU is small

Each fragmented packet will have to change these fields:

+ The total length field = fragment size

+ The more fragments (MF) flag is set for all fragments except the last one

+ The fragment offset field is set to the offset of the fragment in the original
data payload (measured in units of eight-byte blocks)

The header checksum field is re-calculated

fragment offset = number of eight-byte blocks relative to the start of the original

data payload

® Maximum fragment offset = (213 — 1) x 8 = 65,528 bytes

Client Server Programming

- Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 77

Fragment Offset

2B

L

PRSI I S N R R

P IR

PRI R

|

Version 1 IHL l Type of service I_ Total length
Identification —[E’]W
Packet P has reached a router at Tmowive [Protocl Healus e
Albania and got fragmented to 4 Source address
Fragments: P1, P2, P3, P4 Destnaton address
Packet P2 has reached a router at = Options (0 or more words) :
Micronesia and got fragmented L]
To: P2a, P2b
P

Data = 4000 bytes

MF = ©

Fragment offset = @

P1 P2 P3 P4

Data = 1000 bytes Data = 1000 bytes Data = 1000 bytes Data = 1000 bytes

MF = 1
Fragment offset = @

MF = 1
Fragment offset = 125

MF = 1
Fragment offset = 250

MF = @
Fragment offset = 375

P2a

P2b

MF = 1

Data = 504 bytes

Fragment offset = 125

MF = 1

Data = 496 bytes

Fragment offset = 187

Client Server Programming

- Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 78

A"ywun/an/t™>

40

32 Bis
» » I) N I T S - - \ N N I - l) N I T T I - I | I N G|
TI me to L lve Version | IHL l Type of service Total length
Identification ‘ [FJ M Fragment offset
& @ ‘ QrolocoD Header checksum

Source address
I rotOCOI Destination address

Options (0 or more words) T

m Upper limit of routers to pass

m Usually set to 32 or 64

m Decremented by each router that processes the packet
m Router discards the datagram when TTL = 0

Protocol

m Tells IP where to send the datagram up to
+ 6 means TCP
+ 17 means UDP

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 79
ko
Lo v v b v v v b v v b v a s
Header checksum
Identification —[H M Fragment offset
Time to live ‘ Protocol @ar chec@
Source address
® Only covers the header, not the datal Destnation adcress
B How the checksum is computed? ii Options (0 or more words) T

¢ Put a0 in the checksum field
+ Add each 16-bit value together
+ Addinany carry
+ Inverse the bits and put that in the checksum field
m To check the checksum:
+ Add each 16-bit value together (including the checksum)
¢ Addin carry
+ Inverse the bits
¢ The result must be 0
m The ttl field changes at each hop so this needs to be
recomputed on each hop

®m Probability for error?

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 80

A"ywun/an/t™>

41

Start Python console and run:
>>> bin(@x45) = 0100,0101
>>> bin(ex6c) = 0110,1100
>>> bin(0x92) 1001,0010
>>> bin(@xcc) = 1100,1100

m Convert binary to decimal:

00 6¢C: Total Length = 108

92 cc: Checksum = 0x00

Note: When we build the IP header
We start with checksum=0x00 (RED)
And then calculate the checksum and
Write it back in that place

45: Version = v4
IHL = 5
00: Type of Service = 0000

Example of IP Header

m Whatis IP Version? IHL? Type of Service IP HEADER

45 00 00 6¢C
92 cc 00 00
38 06 00 00
92 95 ba 14
a9 7c 15 95

92 cc: Identification = 1001001011001100

32 Bits

T T T ST S S S S

Version ‘ IHL ‘Typeo'serv;ce Total length

Identification ‘ 3 |"é‘ ‘ Fragment offset

Time to live ‘ Protocol Header checksum

Source address

Destination address

T

Options (0 or more words)

L

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

81

Checksum Calculation

first add all 16-bit values together, IP HEADER
addiggeln the carry each time: 45 00 00 6¢
+ 906C 92 cc 00 00
456¢ 38 06 00 00
+ 92cc 92 95 ba 14
4838 a9 7c 15 95
+ 0000
ds38
+ 3806

1103e < We have a carry here !

103e Remove the leading 1 and add back

+ 1

103f

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

82

A"ywun/an/t™>

42

103f
+ 0000

103f

+ bal4

15ce8 & Again we have a carry here !

5ce9 & Remove the leading 1 and add back
+ a97c

10665 < Again we have a carry here !

0666 & Remove the leading 1 and add back
+ 1595

1bfb & Now we have to inverse the bits:

1bfb = @001 1011 1111 1011

e404 = 1110 0100 0000 0100

e404 & This is the Checksum !

Checksum Calculation

IP HEADER

45 00 00 6¢C
92 cc 00 00

+ 9295 %00 00
a2d4 92 95 ba 14

a9 7c 15 95

IP HEADER

45 00 00 6cC
92 cc 00 00
38 06 e4 04
92 95 ba 14
a9 7c 15 95

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

83

Checksum Validation

* The receiver must validate the checksum

* It uses exactly the same algorithm, but this time

it starts with “e404” and must end with “0000”
* If the computation does not end with “0000”, the

receiver does not accept the packet

IP HEADER

IP HEADER

Client Server Programming

45 00 00 6¢C
92 cc 00 00
38 06 e4 04
92 95 ba 14
a9 7c 15 95

45 00 00 6¢C
92 cc 00 00
38 06 00 00
92 95 ba 14
a9 7c 15 95

- Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

84

A"ywun/an/t™>

43

a9

Lo v v v by v v v b v v v by

Total length

Fragment offset

- Version ‘ HL ‘ Type of service ‘
DM

Time to live ‘ Protocol

Header checksum

Source address

Destination address

Each option consists of 4 bytes
The first byte is the option control block

o J1 [2 |3 [s4 |5 [s |7

copy

flag option class | option number

Copy flag: if 1, then copy option to fragments
Option classes are

+ 0-contro

+ 1-reserved

+ 2 - debugging and measurement

+ 3 -reserved

m The second byte designates the size of the entire option in bytes (including the
control fields) and the other bytes are the option data.

A padding to fill out the 32 bit words may be needed after all options
There is room for at most 40 bytes for options (IP header max words = 15 words)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

85

Our First Project !

Design a Python class IpDatagram with the following Interface:

hexstr ="4500006c92cc00003806e4049295bal4a97c1595217a6f2c"

H*

Class constructor
= IpDatagram(hexstr)

o

Class members
.version = 4

.ihl = 5

.length = 40 (bytes)

T T T H#

Class methods

p.source() = 192.68.25.7

p.destination() = 157.29.41.2

p.protocol() = 17

p.ttl() = 32

p.header() = The hex string of header part

p.data() = the hex string of the data part
p.checksum() = oxe404

p.option(n) = Hex string of option n

>>>>> MORE TO COME SOON ... (at the course web site)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

86

A"ywun/an/t™>

44

TCP = Transport Control Protocol

A reliable end-to-end byte stream over an unreliable internetwork
Independent of network architecture, topology, speed

Defined in RFC's 793, 1122, 1323

A machine that supports TCP must have a single "TCP entity" as
part of the operating system on top of the IP layer

|
|
B Robust in the face of many kinds of failures
|
[

TCP sometimes mean a protocol, and sometimes it means a running
computer process (operating system service)

A bidirectional Protocol!

+ The peers (sender and receiver) exchange data in the same
TCP segment format in both directions

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 87

TCP Connections

B Two machines establish a TCP connection by creating (or using)
connection end-points that are called sockets

m A socket is fully identified by network IP and a Port number
+ But it has more structure and operations

® Port numbers are assigned by the OS as 16-bit number

m Each machine can have up to 65535 (2**16-1) open ports

B So it is possible to have many connections between two machines
(how many in principle?)
B One port can be involved in many connections
+ with different ports on the other host
+ with the same port on different hosts
+ Several browsers on the same host connected to ynet http server

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 88

A"ywun/an/t™>

45

TCP Segments (1)

TCP receives data from the Application layer (explorer, gmail, etc.)

It may send it immediately or buffer it until it collects a large amount
to send at once

If urgent, it is possible to force TCP to flush its buffers
+ Socket flush method (sender side)
+ special bit in the TCP packet (receiver side)
TCP breaks the data into segments (TCP packets)
Each segment is shipped separately from the others
may even take a different route than others
may arrive to their destination out of order
some of them may be lost

It's up to the TCP entity at the other end to reassemble, report
missing segments, etc, and deliver the data to the receiving process.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 89

TCP Segments (2)

TCP breaks the data into segments (“TCP packets”)

Each segment is shipped separately from the others

Each segment may take a different route than the others
Segments may arrive to their destination out of order

Some segments may get lost and not reach their destination
Itis up to the TCP entity at the other end to

*

Acknowledge received segments

*

Ignore corrupt segments (no ack is required)

*

Reassemble segments to full message

*

Deliver the data to the receiving process.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 90

A"ywun/an/t™>

TCP Connection Control

m After TCP sends a segment it maintains a timer for receipt of an
acknowledgment from the other end

Every received segment is acknowledged

*

*

Timeout/retransmission is adaptive

*

Checksum on TCP pseudo-header
+ A bad segment is discarded without a NAK

m Duplicate segments are discarded by the receiving TCP
+ |IP may deliver duplicate datagrams

m Sender times out and retransmits (if no ack. received)

® Flow control (sliding windows algorithm) Ensures that a fast sender
does not swamp a slow receiver

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 91

TCP Congestion Control

m Congestion control (host-network interaction) Prevents too much
data from being injected into the network

B TCP avoids sending small packets by accumulating octets until a
buffer is full or until a timer expires (default 2 ms).

®m Each data byte has a sequence number!
+ Used to reassemble segments in order
m Each sequence number must be acknowledged

+ This is done by acknowledging the id of the first byte of the next TCP
packet (it is indicated at its header ack. 16 bits number)

B Initial sequence numbers should be assigned randomly to minimize
problems with duplicate numbers from different connections

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 92

46

A"ywun/an/t™>

47

TCP Segment Structure

TCP HEADER
20 bytes + optional part

DATA

65535 — header bytes (Max)

In real life TCP packets are much smaller 500 bytes to 4K, and often
Just header with no data at all!

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 93

TCP Segment Structure

The TCP segment header

3 32 Bits >

1 8 16 24 32
IllllIllllllllllllllllll]llllllll

Source port Destination port A
Sequence number
Acknowledgement number
TCP u|alp|r[s[F Header
Header Unused |R|C|S|S|Y]! Window size
length G|K|H|T|N|N
Checksum Urgent pointer
Options (0 or more words) 7
Data (optional)
Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 94

A"ywun/an/t™>

48

The TCP segment header

32 Bits

1 8 16 24 2
| IS SR A AR A A S A A AT AR B AR A A A |

Source port Destination port

Sequence number

Acknowledgement number

TCP ulale|r|s|F Header
Header Unused |R[C|S|S|Y]|! Window size
length G|k[H|T[n]|N

Checksum Urgent pointer

Options (0 or more words)

Data (optional)

m The TCP header consists of:
+ Minimum 20-byte (5 words) of fixed-format info
+ Optional part (always an integer multiple of 4-bytes)
B The TCP Data has at most 65535-20-20 minus the options length (bytes)

+ The second -20 comes from IP header
m Thus any TCP segment can have at most 65535-20 (2/16-21) bytes in total

m However this number is usually severely limited by the network MTU
(maximum transfer unit) which is usually 1500 bytes

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

95

The TCP segment header

2em

TCP PORTS it

Source pont

Sequence number

Acknowladgement numbar

Wandow size

Checksum Urgent pointer

‘Options (0 or more words)

Data (optional)

A port is a logical address for intercrosses communication node

Ports provide multiple destinations within one host computer, and even within the
same process!

m port numbers below 256 are "well-known" ports like:
+ 21for FTP
e 23 for TELNET
+ 25 for SMTP
+ 80 for HTTP
+ 110 for POP3
m port numbers below 1024 are reserved for system services
+ Only the administrator (like root in Unix) is allowed to allocate them

® Port numbers from 1024 to 65535 (2**16-1) can be used by user processes without
any special permission

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

96

A"ywun/an/t™>

49

The TCP segment header
ICP SOCKETS
Cowvn o b e o 0w 8000000)
| Source port Destination port -f |

Tumoer

Acknowledgement number

TCP ulale(r|s|F Header
Header Unused |R|C|[S|S|Y|! Window size
jength G|k[H[T[N|N
Checksum Urgent pointer
Options (0 or more words)

Data (optional)

B A socket is a software object which represents a point of inter-process
communication (node)

B Sometimes called: Berkeley sockets
B Sometimes called: TSAP - Transport Service Access Point

B A socket is sometimes characterized by its IP humber and port number, but
it has more than that (as a software unit with methods and data fields)

B Sockets provide multiple connection points within one host computer, and
even within the same process!

B More on sockets in the next lecture unit

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 97

The TCP segment header

3281

Sequence and

Source port l Destination port

Acknowledgement |

Acknowledgement number

TCP ufale[a[s|F Header
alc|s|s|v

Hoader | Unused | Window size
numoers =
Checksum Urgent pointer

Options (0 or more words)

Data (optional)

A 32-bit number
Every byte of the data is numbered

The sequence number for a TCP segment is the id number of the
first data byte in the segment

It does not need to start with 1!
+ for good reasons — it better be random (after each reset)

The range of valid sequence numbers is:
* 0to4,294,967,295
+ Or: 0x0000,0000 to OxFFFF,FFFF

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 98

A"ywun/an/t™>

50

The TCP segment header

32 Bits

Acknowledgernent v

Source port Destination port

Number | ﬂ

Acknowledgement number

TCP NRREER Header
Header Unused [R[C[sfs|Y|! Window size
ongth Gk []T[n[n
Checksum Urgent pointer
Options (0 or more words)

Data (optional)

B A 32-bit number. Valid only if the ACK bit is turned on.

m Specifies the number of the next byte expected from the sender
+ This the last byte correctly received + 1

B Sent with data from the receiver to the sender

m By this, the receiver confirms to the sender that it has received all
bytes below this number (ack. number)

m [f this ack. segment does not arrive in certain time, the sender re-
transmits the previous segment (timer timeout)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 99

The TCP segment header

16-bit window =
s [e Jf’

TCP
e
g

Checksum [Umenpowier |

Options (0 or more words|

Data (optional)

® The number of data bytes in the segment beginning with the one indicated in the
acknowledgment field, which the sender of this segment is willing to receive next

m The “Acknowledgement number” field is the remaining receiver buffer size (bytes)

m Ack=0 signals that that the bytes up to acknowledgment number-1 have been
received, but the receiver is incapable to accept more data at this moment

m Later, if the receiver is ready to receive more data, it sends a segment with the same
acknowledgment number and a non-zero window size

| |f this segment is lost, the sender re-transmits after timeout

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 100

A"ywun/an/t™>

51

The TCP segment header
32Bits
Source port Destination port

Sequence number

Acknowledgement number

TCP ulale|a|s|F
Header Unused |R[C|S|S|Y|! Window size
length afk[H[T[n[N

Checksum Urgent pointer

Options (0 or more words)

Data (optional)

This is the number of 32-bit in the TCP header

This info is required since the header sometimes can be longer than 4 words
Only 4 bits are allocated to the TCP header length field

So it can be at most 15 words long (60 bytes)

Header

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 101
The TCP segment header
32 Bits
(:hecksum B Il I |
Source port Destination port
Sequence number
Acknowledgement number
TCP ulalr|a]s|F Header
Header Unused |R[c|s|s|Y|! Window size
length GIK|H|TININ
Checksum Urgent pointer
Options (0 or more words)
Data (optional)
m Unlike the case of the IP datagram, checksum for TCP segment covers the
whole segment including data and header
m Before computing the checksum, the algorithm zeros the checksum field and
also includes a dummy IP header
Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 102

A"ywun/an/t™>

52

The TCP segment header

32 Bits

Ur ent Covv oo™ v oo Bluu e ¥
Source port Destination port

Sequence number

Acknowledgement number

)
TCP ulale|a|s|F
Header Unused |R|C|S|S|Y|! Window size
afk[H[T[n[N

length

Checksum Urgent pointer

Options (0 or more words)

Data (optional)

m Points to an urgent data a byte offset from the current sequence number
m Used to signal the receiver to abort broken FTP or TELNET sessions
B seldom used

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Header

103

The TCP segment header

32Bits

E Cowwon o ®lonnn e e v a 8lovas o a &)
ptions

Sequence number
Acknowledgement number
TCP ulalr|als|F
Heager Unused Rlc|s|s|y|! Window size
Checksum Urgent pointer
m Simpler than IP options | opons (0 ormore woras) |
m TCP option format: -
+ A single byte for the option type
¢ Alength byte kind | length | meaning
+ data bytes 0 = end of option list
m If the type requires it. 1 |= floJopeTation
. . 2 4 maximum segment size
m Currently implemented options are:
m End of option list indicates the end of the options, in case the end of the

option bytes does not coincide with the end of the TCP headers

B Maximum segment size specifies the maximum segment size the sending
TCP would like to receive

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

T

Header

|

104

A"ywun/an/t™>

53

m ACK=1 means the acknowledgment number is valid
m ACK=0 means there is no acknowledgment in this segment (usually no data)
m PSH=1 then receiver should pass this data to the application ASAP

m SYN - Synchronize sequence numbers to begin a connection (see next slide)
® FIN - The sender has finished sending data (close)
B Unused 6 bits — too bad! (lots of electricity waste ...)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 105

The TCP segment 3

BITS

URG=1 means the urgent pointer is a valid byte offset from the current sequence
number at which urgent data are to be found (interrupt message)

+ Urgent mode is used when aborting rlogin or telnet connections, or ftp data transfers

Sequence nu
Urgent pointer
‘Options (0 or more words)

Data (optional)

+ The receiver is requested to deliver the data to the application upon arrival and not buffer it
RST - Reset (close) the connection
+ after a crash or errors (such as ack to a packet you never sent)

+ at some point used to debug the protocol
+ Lately used to pass performance info between hosts

SYN: handshake (by example)

Step 1: Sender sends a TCP segment with SYN = 1, ACK =0, and
ISN=7000 (Initial Sequence Number example)
¢ SYN is short for Synchronize

+ The ISN=7000 is the beginning of the sequence numbers for data that the sender
will transmit

+ SYN flag announces an attempt to open a connection

If connection established then the first byte transmitted to the receiver will
have the sequence number ISN+1

Step 2. After receiving this TCP segment, the receiver returns a TCP
segment with SYN = 1, ACK =1, ISN = 5000 (the receiver starting sequence
number), and Acknowledgment Number = 7001

Step 3. the sender sends a TCP segment to the receiver that acknowledges
the receiver’'s ISN, With flags set as SYN = 0, ACK = 1, Sequence number
= 7001, Acknowledgment number = 5001

This handshaking technique is referred to as the Three-way handshake or
SYN, SYN-ACK, ACK.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 106

A"ywun/an/t™>

54

TCP Sliding Window Algorithm

* The idea: allow sender to send multiple packets without waiting for
acknowledgement

* But how many packets?

» Step 1: Send 1 packet and wait for ack.

+ After getting ack. 1 from the receiver, inspect the advertised “window
size”: this is the size of buffer that the receiver has for buffering packets

» Sender calculates how many packets can fit in window size and send all
of them without waiting for ack. After that the sender waits for acks.

» This process repeats after getting each ack.

» Sender usually buffers window packets, since it may need to re-transmit
some of them

* Receiver also need to buffer them in order to acknowledge early packets

+ If the receiver’s buffer is squeezed or finished, it may advertise a very
low window size which will force the sender to slow down or stop

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

107

TCP Sliding Window Algorithm: Example

Sliding Window
1[2[3]4a]5]6|7 |8]9 [10[11]12]13]14] 15|
X

» Sender shoots 6 packets in a row with no ack. And then waits for ack. (window size is
large enough to allow 6 packets)

* Receiver gets all packets except for packet 4

* Receiver sends ack. to packets 1,2,3 but cannot ack. packets 5, 6 (packet 4 was lost)

« After timeout, sender re-transmits packet 4, waits for ack. to packets 4, 5, and 6

* Receiver gets packet 4 and sends ack. for packets 4, 5, and 6

* Receiver may decrease window size of TCP header, and thus “slide” the window down

Sliding Window
l1]2]3]a] [[7]8]9[10/11]12[13[14] 15|

Advanced protocols dynamically tune the window size to be suitable for both sides
This sliding window is usually noticed when transmitting big files from one Windows machine to another,
initially the time remaining calculation will show a large value and will come down later

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

108

https://www.youtube.com/watch?v=lkfZ6ifMirw&feature=youtube_gdata_player

A"ywun/an/t™>

Ethernet & & imrmrcamRsT

Protocol ID

Frame F=aBsras
Tialer ' CRC Checksum

e MAC Address = Ethernet card 12 bytes id

* MAC = Media Access Control

e Example: b0:20:92:48:72:45

* placing the CRC at the end of a frame reduces
packet latency and reduces hardware buffering
requirements

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 109

A DECODED ETHERNET FRAME
00 A0 92 48 72 45 dest. MAC address = 0:20:92:48:72:45
Ethernet Header 00 00 OC 85 C3 58 [—> source MAC address = 0:0:c:5:c3:58
08 00 network protocol = 0x0800 (IP)
4 IP version = 4
5 header length = 5 words (word=4 bytes)
00 type of service = @ (normal)
IP h r 00 29 length = 0x29 octets = 41 bytes
eade DB FB datagram identification
40 00 || don't fragment
FE TTL = 254
06 transport protocol type = 6 (TCP)
7D CB header checksum
81 6E 1E 1A source IP address = 129.110.30.26
81 6E 02 11 destination IP address = 129.110.2.17
02 8B source port = 0x028b (651 dec.)
02 03 desti. port = 0x0203 (515 dec., printer)
TCP header 6A 86 7B 57 source seqno = 1787198295 (dec.)
B6 B6 BO 20 acknowledgment no = 3065425952 (dec.)
50 —>| header length = 5 words
10 indicates an ACK
24 00 window size = ©x2400 (9216 dec.)
15 89 TCP checksum
00 00 urgent pointer off
02 Data byte
DATA 54 41 4D 49 4C] Padding to make a 46 byte IP datagram
Ethernet Trailer _—) Ethernet checksum (Ethernet trailer)
Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 110

55

A"ywun/an/t™>

56

UDP Header

32 Bits

1 1 | I — 1 1 I 1 1 1 1 1 | — I

E_ b 1} 1 1 1 I 1 1 1 | SN D | 1

Source port Destination port

UDP length UDP checksum

Protocol number = 17

Always 8 bytes length header

UDP Length = Header + Data length in bytes
Maximum length = 65515 (due to IP size limit)
Checksum cover the full packet (header+data)
Checksum usage is optional (usually=90)

No flow control!

No congestion control!

Unreliable! (up to user processes)

Packet order, timing, and error control are
usually done at the data level

DNS I using UDP for name resolution

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

111

ICMP Protocol

ICMP - Internet Control Message Protocol

used by the operating systems to send error messages indicating, for
example, that a requested service is not available or that a host or
router could not be reached

Another example: if a router receives a packet larger than the next
hop MTU, it may drop the packet and send an ICMP message which
indicates the condition “Packet too Big”, or it may fragment the
packet and send it over the link with a smaller MTU

m ICMP can also be used to relay query messages

B |t is assigned protocol number 1

m We skip the header and other details in this course (read

Tanenbaum for more details)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

112

A"ywun/an/t™>

S7

Part 4

TRANSPORT LAYER

SOCKET PROGRAMMING

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

113

Transport Layer

m Data transmission service goals for the application layer

*

Efficiency
Reliability
Accuracy

*

*

+ Cost-effective
B The entity that does the work is called the transport entity
B The transport entity

+ Is usually part of the operating system kernel

+ sometimes a separate library package which is loaded by the OS or
even user processes

+ And sometimes even on the network interface card

m The transport entity (TCP) employs the services of the network
layer (IP), and its associated software and hardware (cards and
device drivers)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

114

A"ywun/an/t™>

58

Transport Layer

B The transport entity code runs entirely on users machines, but the
network layer mostly runs on routers, cards, and other bridging
hardware

®m Bridging hardware is inherently unreliable and uncontrollable

+ Ethernet cards, routers, and similar hardware do not contain
adequate software for detecting and correcting errors

m To solve this problem we must add another layer that improves the
quality of the service:

+ the transport entity detects network problems: packet losses,
packet errors, delays, etc.

+ and then fixes these problems by: retransmissions, error
corrections, synchronization, and connection resets

B Transport layer interface must be simple and convenient to use
since it is intended for a human user

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

115

Transport Service Primitives

Primitive Packet sent Meaning
Server LISTEN (none) Block until some process tries to connect
Client CONNECT CONNECTION REQ. Actively attempt to establish a connection
Server/Client | SEND DATA Send information
Server/Client | RECEIVE (none) Block until a DATA packet arrives
Server/Client | DISCONNECT | DISCONNECTION REQ. | This side wants to release the connection

These are the basic logical actions between two communication points
A communication point is created by a process that runs on a machine
There are several software implementations of these abstract model
The most common is called: “Berkeley Sockets”

Note that the “LISTEN” and “RECEIVE” actions do not involve any
packet transmission! These are actually operating system states:

+ LISTEN — go to sleep until a connection arrives (OS is attending)

+ RECEIVE - go to sleep until data arrives (OS does the buffering)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

116

A"ywun/an/t™>

59

Packet Hierarchy

Ethernet Frame

IP datagram

TCP segment

IP header

TCP header

Ethernet header

Ethernet trailer

N

’ Transport Layer ‘

’ Network Layer ‘

Physical Layer ‘

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

117

Berkeley Sockets
m Sockets first released as part of the Berkeley UNIX
4.2BSD software distribution in 1983
®m They quickly became popular

®m The socket primitives are now widely used for Internet
programming on many operating systems

B There is a socket-style API for Windows called “winsock”

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

118

A"ywun/an/t™>

60

Berkeley Socket Services

Primitive Meaning
ClientServer | SOCKET Create a new communication end point
Server BIND Attach a local address to a socket
Server LISTEN Announce willingness to accept connections; give queue size
Server ACCEPT Block the caller until a connection attempt arrives
Client CONNECT | Actively attempt to establish a connection
Client/Server | SEND Send some data over the connection
Client/Server RECEIVE Receive some data from the connection
Client/Server [CLOSE Release the connection

m The SOCKET primitive creates a new endpoint and allocates table space for it
within the transport entity

B The first four primitives are executed in that order by servers
B A successful SOCKET call returns an ordinary file descriptor for use in
succeeding calls, the same way an OPEN call on a file does

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

119

SERVER SOCKET

m Newly created socket has no network address (yet)
+ The machine may have several addresses (thru several interface cards)
+ It must be assigned using the BIND primitive method

B Once a socket has bound an address, remote clients can connect to it

m The parameters of the SOCKET call specify the addressing format to
be used, the type of service desired (reliable byte stream , DGRA, etc),
and the protocol.

import socket

Creating a server socket on the local machine

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 2525))

sock.listen(5)

new_sock, (client_host, client_port) = sock.accept()

print "Client:", client_host, client_port

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

120

A"ywun/an/t™>

61

CLIENT SOCKET

B A client socket is created exactly as a server socket except that it does
not locally bound to the machine, and it does not listen

m A client socket is connecting to an already running server socket,
usually on a remote host, but also on the local host (as yet one more
method of inter-process communication!)

import socket

Creating a client socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = socket.gethostname()

connect to local host at port 2525

server = (host, 2525)

sock.connect(server)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

121

CONNECT & ACCEPT primitives

® When a CONNECT request arrives from a client to the server, the
transport entity creates a new copy of the server socket and returns
it to the ACCEPT method (as a file descriptor)

®m The server can then fork off a process or thread to handle the
connection on the new socket and go back to waiting for the next
connection on the original socket

m ACCEPT returns a file descriptor, which can be used for reading and
writing in the standard way, the same as for files.

import socket

Creating a server socket on the local machine

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 2525)) # bind to all local interfaces
sock.listen(5) # allow max 5 simultaneous connections
newsock, (client_host, client_port) = sock.accept()

print "Client:", client_host, client_port

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

122

A"ywun/an/t™>

62

SEND & RECEIVE primitives

® The CONNECT primitive blocks the caller and actively starts the
connection process (the transport entity is in charge)

m When it completes (when the appropriate TCP segment is received
from the server), the client process is awakened by the OS and the
connection is established

B Both sides can now use SEND and RECEIVE to transmit and receive
data over the full-duplex connection

server to client:
newsock.send("Hello from Server 2525")

client to server

server = (host, 2525)

sock.connect(server) # connect to server
sock.recv(100) # receive max 100 chars

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 123

CLOSE primitive

® When both sides have executed the CLOSE method, the connection is
released

m Berkeley sockets have proved tremendously popular and have
became the standard for abstracting transport services to applications

B The socket API is often used with the TCP protocol to provide a
connection-oriented service called a reliable byte stream

m But sockets can also be used with a connectionless service (UDP)

B In such case, CONNECT sets the address of the remote transport
peer and SEND and RECEIVE send and receive UDP datagrams to
and from the remote peer

Server:
newsock.close()

Client
sock.close()

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 124

A"ywun/an/t™>

63

The Simplest Client/Server App

import socket SERVER

Creating a server socket on the local machine

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 2525))

sock.listen(5)

newsock, (client_host, client_port) = sock.accept()

print "Client:", client_host, client_port

newsock.send("Hi from server 2525")

newsock.close()

import socket CLIENT

creating a client socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

host = socket.gethostname()

connect to local host at port 2525

server = (host, 2525)

sock.connect(server)

print sock.recv(100)

sock.close() Q: How many clients can connect to this server?

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 125

7+ This page contains a client program that can request a file from the server program

S * on the next page. The server responds by sending the whole file.
k */
oc et #include <sys/types.h>

#include <sys/socket.h>

» #include <netinet/in.h>
Programming ===

#define SERVER_PORT 12345 /* arbitrary, but client & server must agree *|
- #define BUF_SIZE 4096 /* block transfer size */
Ex am Ie in C . int main(it arge, char *"argy)
- {
intc, s, bytes;

1] char buf[BUF_SIZE]; /* buffer for incoming file */
struct hostent *h; /* info about server */
struct sockaddr_in channel; /= holds IP address */
if (argc != 3) fatal("Usage: client server-name file-name");

h = gethostbyname(argv(1]); /* look up host's IP address */
e rve r if (1h) fatal(*gethostbyname failed");

s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if (s <0) fatal("socket");

&channel, 0, nel));

channel.sin_family= AF_INET;

memcpy(&channel.sin addr.s addr, h->h addr, h->h length);

channel.sin_port= htons(SERVER_PORT);

¢ = connect(s, (struct sockaddr *) &channel, sizeof(channel));

C“ent COde using SOCketS: if (c < 0) fatal("connect failed");
/= Connection is now established. Send file name including 0 byte at end. */
Client program that requests a wrkte(s; arguiZ] streniargv2)1);
/* Go get the file and write it to standard output. */
i while (1) {
Flle from a server prOgram bytes = read(s, buf, BUF_SIZE); /* read from socket */
if (bytes <= 0) exit(0); /* check for end of file */
write(1, buf, bytes); /* write to standard output */

}
}

fatal(char *string)

printf("%s\n", string);
exit(1);

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 126

A"ywun/an/t™>

Tinclude <sysnypesh= ________________/* Thisis he server code =7 |
#include <sys/fentl.h>
#include <sys/socket.h>
#include <netinet/in.h>

S oc et #include <netdb.h>
#define SERVER_PORT 12345 /* arbitrary, but client & server must agree *

#define BUF_SIZE 4096 /% block transfer size */
#define QUEUE_SIZE 10

Programming o=

ints, b, |, fd, sa, bytes, on=1;
char buf[BUF_SIZE]; /* buffer for outgoing file */

)
Exa m p Ie l n C L] struct sockaddr_in channel; /* hold's IP address */
L]

/* Build address structure to bind to socket. */
&ch I, 0, nel)); /* zero channel */

- channel.sin_family = AF_INET;
channel.sin_addr.s_addr = htonl(INADDR_ANY);

l channel.sin_port = htons(SERVER_PORT);
/* Passive open. Wait for connection. */
s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); /* create socket */
if (s < 0) fatal("socket failed");
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on));
b = bind(s, (struct sockaddr *) &channel, sizeof(channel));
if (b < 0) fatal("bind failed");

| = listen(s, QUEUE_SIZE); /* specify queue size */
if (I < 0) fatal(“listen failed®);

/* Socket is now set up and bound. Wait for connection and process it. */

while (1) {
sa = accept(s, 0, 0); /* block for connection request */
if (sa < 0) fatal("accept failed®);
read(sa, buf, BUF_SIZE), /* read file name from socket */
/* Get and return the file. */
fd = open(buf, O_RDONLY); /* open the file to be sent back */
if (fd < 0) fatal(*open failed");
while (1) {
bytes = read(fd, buf, BUF_SIZE); /* read from file */
if (bytes <= 0) break; /* check for end of file */
Server COde write(sa, buf, bytes); /* write bytes to socket */
}
close(fd); /* close file */
close(sa); /* close connection */
}
}
Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 127

C Socket API (1)

// Usually located at /usr/include/sys/socket.h

/* Create a new socket of type TYPE in domain DOMAIN, using
protocol PROTOCOL. If PROTOCOL is zero, one is chosen automatically.
Returns a file descriptor for the new socket, or -1 for errors. */

extern int socket (int __domain, int _ type, int _ protocol) __THROW ;
/* Give the socket FD the local address ADDR (which is LEN bytes long). */

extern int bind (int __fd, _ CONST_SOCKADDR_ARG __addr, socklen_t _ len)
__THROW;

/* Put the local address of FD into *ADDR and its length in *LEN. */
extern int getsockname (int __fd, _ SOCKADDR_ARG __addr,
socklen_t *_ restrict _ len) _ THROW;

/* Open a connection on socket FD to peer at ADDR (which LEN bytes long).
For connectionless socket types, just set the default address to send to
and the only address from which to accept transmissions.

Return @ on success, -1 for errors.
This function is a cancellation point and therefore not marked with
__THROW. */

extern int connect (int __fd, __ CONST_SOCKADDR_ARG __ addr, socklen_t __1len);

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 128

64

A"ywun/an/t™>

65

C Socket API (2)

/* Open a connection on socket FD to peer at ADDR (which LEN bytes long).

For connectionless socket types, just set the default address to send to

and the only address from which to accept transmissions.
Return @ on success, -1 for errors.

This function is a cancellation point and therefore not marked with
__THROW. */

extern int connect (int __fd, __CONST_SOCKADDR_ARG __ addr, socklen_t __1len);

/* Send N bytes of BUF to socket FD. Returns the number sent or -1.

This function is a cancellation point and therefore not marked with
__THROW. */

extern ssize_t send (int _ fd, const void *_ buf, size_t _ n, int __ flags);

/* Read N bytes into BUF from socket FD.
Returns the number read or -1 for errors.

This function is a cancellation point and therefore not marked with
__THROW. */

extern ssize_t recv (int __fd, void *_ buf, size_t _ n, int _ flags);

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

129

WWW Client Sockets (v1)

import socket, os

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
google_server = ("www.google.com", 80)
sock.connect(google_server)

HTTP protocol "GET" command

sock.send("GET / HTTP/1.0\r\n\r\n")

Receiving the index.html file
bufsize = 4096
html_file = "c:/workspace/index.html"
f = open(html_file, "w")
while True:
data = sock.recv(bufsize)
if not data:
f.close()
break
f.write(data)

os.system("notepad.exe " + html_file)
#os.startfile(html_file)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

130

A"ywun/an/t™>

66

Python File Server (v1)

import socket, sys

servsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
servsock.bind(("", 12345)) # bind to all local host interfaces
servsock.listen(25) # set maximum accept rate to 25 connections

while True:
newsock, address = servsock.accept()
file = newsock.recv(255) # receive file name: max 255 chars
print "File =", file
f = open(file, "rb") # open file for reading in binary mode
while True:
data = f.read(4096)
if not data:
f.close()
break
n = newsock.send(data)
if n<len(data):
raise Exception("send error: transmitted less than data length™)
newsock.close() ’g\e}.

¥

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

131

Python File Client (v1)

To be run from the command line
import socket, sys

remote_file_name = sys.argv[1]
local_file_path = sys.argv[2]

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("localhost", 12345))
sock.send(remote_file_name)
f = open(local_file_path, "wb")
while True:

data = sock.recv(4096)

if not data:
f.close()
break
f.write(data) 5@>
&
sock.close() N

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

132

A"ywun/an/t™>

67

Conversation Techniques

m A reliable and robust communication between two sockets, can
sometimes become a highly complex and fragile

®m To simplify it and manage its complexity, some strict rules must be
followed

B A message must be sent in one of the following modes:
1. Fixed length (like always 40 bytes, with padding if necessary)
2. Delimited (like: “hame = Dan Hacker\n”)

3. Predefined length:
“240 message ... ends ... after ... 240 bytes”
The size itself can be of fixed length or delimited

4. End by shutting down the connection
m In practice, all these 4 methods are used in combination!

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

133

Safe Socket Send

m In general this is not needed, but in some rare cases the socket send method
is not guaranteed to send all the message!!

m |t may send just a part of it, and therefore we must ensure sending the full
message

B In most cases (short messages) this is not needed, but keep this in mind!
B The sendall() method has the same effect

def safe_send(sock, message):
i=o0
n = len(message)
while i < n:
sent = sock.send(message[i:])

if sent ==
raise RuntimeError("socket connection broken™)
i += sent

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

134

A"ywun/an/t™>

68

A Safe Socket sendall() method

B The socket class is already equipped with a safe sendall() method
which does not return until it sent the whole message, or until an error
is encountered

B None is returned on success. On error, an exception is raised, and
there is no way to determine how much data, if any, was successfully
sent.

r = sock.sendall(data)
if not r is None:
print "Exceptional socket sendall return code:", r
raise Exception("send error: data was not fully transmitted")

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

135

Receiving Fixed Size Message

®m The socket recv() method may get less characters than requested

m To be fully safe, we need to run recv() several times to get the full
message (provided we know the exact message size in advance!)

B The next function ensures that we get an exact number of bytes from
the socket

def recv_fixed_size(sock, expected_size, bufsize=0):
if bufsize ==
bufsize = min(expected_size, 4096)
message = ""
while len(message) < expected_size:
chunk = sock.recv(bufsize)
if chunk == "":
raise RuntimeError("socket connection broken")
message += chunk
return message

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

136

A"ywun/an/t™>

69

Receiving a Delimited Message

m Delimited message are messages that end with a delimiting character that is
agreed by both sides

B The usual delimiting character is the newline character ‘\n’, or some special
character (such as ‘@’)

B This is however slow due to the fact that we must receive 1 character at a time

def recv_delimited_message(sock, limit='\n"):
message = ""
while True:
char = sock.recv(1)

if char == "":
return None

if char == limit:
break

else:

message += char
return message

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

137

Receiving a Delimited Message

m EXAMPLE

client side:
sock.sendall(“c:/workspace/oliver.txt” + '\n')

server side:
file = recv_delimited_message(servsock)
file = “c:/workspace/oliver.txt”

m Note that the message itself drops the delimiting char! (i.e., the
delimiting char is not part of the message!)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

138

A"ywun/an/t™>

70

Send and Receive with a Size Header

m A faster technique for sending and receiving messages with a known size is by
appending a “fixed size header” to the message itself

® Simple “encode/decode” methods are enough to make this technique very
easy and efficient to use (between a client and server that agree on it)

B Here is the key idea:

*

*

*

Compute the message size in hexadecimal form

Pack this size into an 8 chars hex string, possibly by adding leading zeros
to it if it is too short

Place the header in front of the message and send it!

B Example: message = “Hello Web Wide World”

*

*

*

Decimal size = 20

Hexadecimal = 0x14

Header (8 bytes) = “00000014” (removed the leading Ox)
Send message = “0000014Hello Web Wide World”

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

139

Code for: send_size and recv_size

convert message length to hex and chop the leading 'ox'

def send_size(sock, message):
size_string = hex(len(message))[2:]
data = (8 - len(size_string)) * '@' + size_string + message
sock.sendall(data)

The receiver gets the first 8 bytes, adds a “©x”
prefix, and converts the hex to decimal
def recv_size(sock, bufsize=0):

hexstr = "Ox" + recv_fixed_size(sock,8)

size = int(hexstr, 16)

return recv_fixed_size(sock, size, bufsize)

m Example: recv_size(“0000014Hello Web Wide World”)
Will first get the first 8 chars header: “00000014”
Then convert it to decimal: size=20
Then recv the next 20 chars which form the message itself:

“Hello Web Wide World”

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

140

A"ywun/an/t™>

71

File Retrieval Routine

B Retrieving a file trough a socket is very common, so we better have a
common function that does it effectively

B This is also a safe measure for draining the socket into a local file: we
are sucking all data from the socket until it has nothing else to receive

m However this is good only if socket closes connection after sending file

Dump socket output (sock.recv) to a local file
def recv_to_file(sock, filename, mode='w', bufsize=4096):
f = open(filename, mode)
while True:
data = sock.recv(bufsize)
if not data:
f.close()
break
f.write(data)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

141

File Retrieval Routine

m For server socket that sends many files, the standard method is:
1. Send the file size to the client
2. Send the file stream to the client

B The next function retrieves a fixed size stream to a file:

def recv_fixed_size_to_file(sock, size, file, mode="wb", bufsize=0):
if bufsize ==
bufsize = min(size, 4096)
f = open(file, mode)
curr_size = 0
while curr_size < size:
data = sock.recv(bufsize)
if data == "":
raise RuntimeError("socket connection broken")
f.write(data)
curr_size += len(data)
f.close()

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

142

A"ywun/an/t™>

72

Send File Routine

m Sending a file through a socket is also a very common routine, which
we have already encountered several times

m Here is a safe function for sending a local file from a local socket to a
remote host

def send_file(sock, file, mode="rb", bufsize=4096):
f = open(file, mode) # open file for reading in binary mode
while True:
data = f.read(bufsize)
if not data:
f.close()
break
rcode = sock.sendall(data)
if not rcode is None:
print "Exceptional socket sendall return code:", rcode
raise Exception(“send error: data was not fully transmitted")

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

143

socket_utils module

m All these new socket utilities are assembled in the in the socket_utils
module. It can be downloaded from:
http://tinyurl.com/samyz/cliserv/lab/socket.zip

B You can download it and throw in your Python library, and then import
it to your Python programs (see below)

B You are encouraged to improve and add new utilities to this module!

B So it is expected to change a lot until we reach Projects 4 and 5, in
which we will make important use with this module! (stay tuned)

if you throw it to: “c:/workspace”, then:
import sys

sys.path.append("c:/workspace®)

from socket_utils import *

if you throw it to “c:\python27\1lib, then it will work immediately:
from socket_utils import *

Not that this module also imports: socket, time, hashlib, os, threading

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

144

A"ywun/an/t™>

73

WWW Client Sockets (v2)

m Here is version 2 of our www connection to Google web server

B This time we are using our recv_to_file utility function to drain the
socket to an html file

from socket_utils import *

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
google_server = ("www.google.com", 80)
sock.connect(google_server)

sock.send("GET / HTTP/1.0\r\n\r\n")

html_file = "c:/workspace/index.html"

recv_to_file(sock, html_file)

os.system("notepad.exe " + html_file)
#tos.startfile(html_file)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

145

WWW Client Sockets (v3)

® |n version 3 we present a more interesting GET request:
m Google search query

from socket_utils import *

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server = ("www.google.co.il", 80)

sock.connect(server)

sock.send("GET /search?q=python+socket+programming HTTP/1.0\r\n\r\n")
html_file = "c:/workspace/index.html"

recv_to_file(sock, html_file)

os.system("notepad.exe " + html_file)

os.startfile(html_file)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

146

A"ywun/an/t™>

74

WWW Client Sockets (v4)

B One more example with a deep path

from socket_utils import *

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
html_file = "c:/workspace/index.html"

server = ("www.cs.uic.edu", 80)

sock.connect(server)

sock.send("GET /~jbell/CourseNotes/OperatingSystems/index.html HTTP/1.0\r\n\r\n")
recv_to_file(sock, html_file)

os.startfile(html_file)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 147

Python File Server (v2)

import socket, sys

servsock = socket.socket()
servsock.bind(("localhost"”, 12345))
servsock.listen(20) # set maximum accept rate to 20 connections

id = 0
while True:
newsock, address = servsock.accept()
id += 1
start = time.time()%1000
file = newsock.recv(255) # receive file name: max 255 chars
send_file(newsock, file)
end = time.time()%1000
print "Connection %d: File = %s, Time = %.2f-%.2f" % (id, file, start, end)
newsock.close()

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 148

A"ywun/an/t™>

75

Notes on socket send/recv

m When a recv() returns 0 bytes, it means the other side has closed
the connection (or is in the process of closing connection)

®m You will not receive any more data on this connection! Ever!
m But you may be able to send data successfully

m Similarly: if a send() returns after handling 0 bytes, the connection
has been closed or broken

B Example: HTTP uses a socket for only one transfer:

*

The client sends a request, then reads a reply. That's it.
The socket is discarded

*

+ This means: a client can detect the end of the reply by receiving 0 bytes

*

(which corresponds to the fourth type of message transfer)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

149

Python File Client (v2)

To be run from the command line
from socket_utils import *
import sys

remote_file_name = sys.argv[1]
local_file_path = sys.argv[2]

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
file_server = ("localhost", 12345)
sock.connect(file_server)

sock.send(remote_file_name)

recv_to_file(sock, local_file_path, 'wb')

sock.close()

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

150

A"ywun/an/t™>

76

Quality Checks

m Testing networking applications is a very critical and difficult domain

m Google invests a substantial amount of resources for testing and
validating its networking infrastructure and applications

m Examples: making sure that gmail message
+ Arrive on time
+ Are not lost
+ Are not modified on their journey
+ Backup and restore
+ Performance under congested and stressful networking conditions

B To get an idea on this domain, we will write a Python program that
tests our file transfer server and client

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

151

Quality Checks Plan

m Choose several files from different sizes for our Test Plan
+ We already have the Oliver twist book and our huge db.csv database
m Write a function that uses the file server to transfer a given file

m Write a function which loops over the previous function a large number
of times (like: 20, 50, 100, and even 1000 times!)

m Our test program should check the following things:
+ The remote file and the transferred file are identical on each iteration

+ The transfer speed is reasonable and is uniform across all experiments
+ CPU consumption is not too high
+ memory usage is reasonable (no leaks or swamp)

m To be further discussed in class

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

152

A"ywun/an/t™>

7

Project 4: BFTP
Braude File Transfer Protocol

B This is our next course project

m All 4 first versions of our small file server/client were have focused only
on one operation: GET file

m A normal File transfer service usually have more than this operation.
To list a few: GET, PUT, LIST, PWD, CD, DELETE, and more.

B These operations are discussed in the initial project draft. We will all
make efforts to define the final project goals in the next week or two

B Please visit the course web site and read more on project 4 and try to
help in defining the protocol and checking the common code

B To check the socket_utils code, try it on the previous small tests (1-4)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

153

Process and Threads Concepts

m A process (or job) is a program in execution
m A process includes:

Text (program code)

Data (constants and fixed tables)

Heap (dynamic memory)

Stack (for function calls and temporary variables) .,
Program counter (current instruction) stack

@ @ = @ IS s

CPU registers l
7. Open files table (including sockets)
B To better distinguish between a program and a

process, note that a single Word processor program 0l
may have 10 different processes running .
simultaneously eap
m Consider multiple users executing the same Internet data
explorer (each has the 6 things above)
B Computer activity is the sum of all its processes Lot
0

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

154

A"ywun/an/t™>

78

Process States

B As a process executes, it changes state
+ new: The process is being created
¢ running: Instructions are being executed
+ waiting: The process is waiting for some event to occur
+ ready: The process is waiting to be assigned to a processor
+ terminated: The process has finished execution

admitted interrupt terminated

scheduler dispatch

1/0O or event completion M

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

1/O or event wait

155

CPU Process Scheduling

® Modern operating systems can run hundreds (or thousands) of
processes in parallel !

m Of course, at each moment, only a single process can control the
CPU, but the operating system is switching processes every 15
milliseconds (on average) so that at 1 minute, an operating system
can switch between 4000 different process!

B The replacement of a running process with a new process is
generated by an INTERRUPT

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

156

A"ywun/an/t™>

One Process, Many Threads!

TEXT (PROGRAM CODE)

DATA

HEAP (Dynamic Memory)

Process Parts

OPEN FILES TABLE

THREAD 1 THREAD 2 THREAD 3 THREAD 4
Registers Registers Registers Registers
Program Counter | Program Counter | Program Counter | Program Counter
Stack Stack Stack Stack

Client Server Programming

- Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

157

THREADS

m A thread is a basic unit of CPU utilization consisting of
+ Program counter
+ Reqisters
+ Stack
¢ Thread ID
m Every thread is running in the context of a parent process which have
TEXT (Program Code)
DATA (constants)
HEAP (Dynamic Memory

*

*

*

*

Open Files Table
B A process consists of multiple threads which share these 4 things

B This means that several threads can use and share a common
variable, a common open file, and even a common socket! In parallel

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

79

A"ywun/an/t™>

80

THREADS

B In modern operating systems, a process can be divided into several
tasks that operate in parallel

B These tasks can sometimes run independently of each other, and
sometimes with minimal interdependencies (or else it's better to give
up threads!)

m This is particularly desirable if one of the tasks may block (and block
the entire process), and then allow the other tasks to proceed without
blocking

m Example: Microsoft Word process sometimes involves the following
activities within a single running process:

+ Aforeground thread processes user input (keystrokes)

+ Second thread makes spelling and grammar checks

+ Third thread loads images from the disk (or internet)

+ Fourth thread performs incremental backup in the background

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

159

THREADS - Notes

B Threads are easier to create than processes since they do not require
a separate address space!

m Multithreading requires careful programming since threads share data
structures that should only be modified by one thread at a time!

®m Unlike threads, processes do not share the same address space and
thus are truly independent of each other.

m Problem in one thread can cause the parent process to block or crash
(and thus kill all other threads!)

B Threads are considered lightweight because they use far less
resources than processes

m Threads, on the other hand, share the same address space, and
therefor are interdependent

® Therefore a lot of caution must be taken so that different threads don't
step on each other!

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

160

A"ywun/an/t™>

81

Python Threads: Hello 1

from threading import Thread
from time import strftime

class MyThread(Thread):
def run(self):
threadName = self.getName()
timeNow = strftime("%X")
print "%s says Hello World at time: %s" % (threadName, timeNow)

Openning 5 threads
for i in range(5):
t = MyThread()
t.start()

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 161

Python Threads: Hello 2

import os, time, random
from threading import Thread

def hello(tname):
delay = 0.050 + 0.100 * random.random() # random value between 0.050 to 0.150 (seconds)
time.sleep(delay)
print "Delay =", delay
print "Hello from thread %s" % (tname)

def run_threads():
print "Process ID =", os.getpid()
t1l = Thread(target=hello, args=('t1',))
t2 = Thread(target=hello, args=('t2',))
t3 = Thread(target=hello, args=('t3',))
t4 = Thread(target=hello, args=('t4',))
t5 = Thread(target=hello, args=('t5',))

threads = [t1, t2, t3, t4, t5]
for t in threads:
print "Starting thread:", t
t.start()

for t in threads:
t.join()

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 162

A"ywun/an/t™>

82

Part b

PROTOCOL DESIGN

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

163

AGENDA

®m Networking Protocol Design Principles

® Common Networking Protocol Techniques

m Learn from old and highly used internet protocols
® Introducing SMTP, POP3, and IMAP by examples

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

164

A"ywun/an/t™>

83

Principles of Protocol Design

B Reference: http://nerdland.net/2009/12/designing-painless-protocols

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

165

Protocol Design: Principle 1

Do not re-invent the Wheel!

m Try first to use existing protocols, or at least to imitate
them as much as possible

® Protocols which survived many years are probably good
and well thought

® They passed a lot of storms and fire tests and they are
still here!

m For this, we need to get to know at least the most
popular ones first

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

166

http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols

A"ywun/an/t™>

84

Protocol Design: Principle 2

KISSD - Keep It Simple Stupid and
Deterministic

m Complicated protocols are doomed to cause chaos, complications,
and eventually die!

B At every stage it should be completely clear what can happen next!

| Situations in which anything can happen lead to "code pollution®
and later to horrible bugs and eventually to “protocol death”

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

167

Protocol Design: Principle 3

Prefer Human Readability

m Prefer plain simple text on short cryptic codes
m Unless speed is truly the most important factor in your system!
m Always better to sacrifice speed for readability

+ "less is more" principle

B Commands like LOGIN, GOODBYE, HELLO, QUIT are much
clearer than codes like: 031, 404, 502, etc.

m |f your protocol is going to contain free-form text then your protocol
really should use Unicode!

m English is most definitely not the only language on the Internet!

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

168

A"ywun/an/t™>

85

Protocol Design: Principle 4

Make Magic Numbers Meaningful

B |In many cases, numeric status codes can be useful and even
human readable

m Make sure to use meaningful numbers with clear structure

m For example every HTTP response comes with a numeric status
code prefix

m Everyone is familiar with:
HTTP 404 code ("File Not Found" error code)

B In most cases, it's just enough to see the number and immediately
understand what happened

B The meaning embedded in this code is the first digit: 4
m User quickly catch the “400” response family

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

169

Protocol Design: Principle 4 Example

Make magic numbers meaningful

1xx information
2xx content

Architecture: 3xx redirection
4xx client error
5xx server error

200 Request was accepted and fulfilled
301 Page moved

400 Bad request

402 Payment required

403 Forbidden request

404 File not found

500 Server Error

501 Not implemented

Details:

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

170

A"ywun/an/t™>

86

Protocol Design: Principle 5

Scalability: Design for Expansion!

m |f your protocol is good, it will be revised and extended later on
(again and again!). Prepare for this from the start!

m Assign meaningful numbers or bit masks as described in principle
4, and reserve bits and fields for future use

m ndicate your protocol version immediately after handshaking (like:
"HTTP/1.0")

m Force both connections to announce and match their protocol
versions immediately after handshaking

B Thus if a fatal design flaws are found after a year or two, upgrade
your protocol to next version and slowly deprecate the old version

B The backbone protocol of the Internet, IP, does exactly this! and
that helps makes IPv6 possible! (the IP version is an integral part of
the IP header!)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

171

Protocol Design: Principle 6

Don’t be stingy with information

m never hide relevant information from the other side (unless there is
a security concern)

m Practically it means: each end of the connection should be able to
guery the other side for any relevant information

m Example: In the BFTP server/client project

+ the client should be able to query the server if a file exists
before attempting to retrieve it, or get a list of files in a directory

+ Otherwise, we will never be able to know if a file cannot be
retrieved due to server error connection problem? or it simply
does not exist?

+ could be very frustrating or lead to inefficient actions

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

172

A"ywun/an/t™>

87

Protocol Design: Principle 7

Document your protocol precisely !!!

m Write a clear and full design specification of your protocol before
you implement it

B You cannot implement a protocol which was not clearly designed
and well thought

® For example, it is a bad idea to have a “restart connection”
command without documenting what exactly should happen when
this command is issued? What to do with partial buffers? Late
packets? How many consecutive restarts are ok? etc.

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

173

Protocol Design: Principle 8

Postel’s Law: “be conservative in what
you do, be liberal in what you accept

from others.”

m This was originally coined in RFC 761, the document specifying TCP

m This is a very important, and widely known principle, yet also widely
misunderstood

B The most notorious misapplication of this principle was in the
implementation of early HTML parsers.

®m Based on this idea, the parsers would take in any old junk that vaguely
resembled HTML and try as hard as possible to display something on the
browser

B The result of this extreme laxity was more than a decade of the nightmare
known as “tag soup” which is only now beginning to heal from

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

174

A"ywun/an/t™>

88

Protocol Design: Postel’s law

Postel’s Law: “be conservative in what you do, be
liberal in what you accept from others.”

The real meaning of the Robustness Principle is not that erroneous input
should be accepted as valid, but that erroneous input should not cause
catastrophic failure!

Valid parts of a partially-erroneous input should be accepted if possible,
and that diagnostics should be given for erroneous input when feasible

An HTML parser implementation that properly followed this rule would,
upon receiving “tag soup” HTML

+ produce a warning message that the HTML was invalid

+ hopefully display some information about what was wrong (e.g.
unclosed anchor tag, missing doctype, etc)

+ and only then try to (or give the option to) display the parser’s best
approximation of what the author meant

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

175

Protocol Design: Principle 9

Design for security from the start

Security is a common problem to many of the standard protocols, which
we live with its detrimental effects every day

These protocols, designed when the Internet was in its infancy as an
academic and governmental experiment, were not designed with security
in mind

This is what facilitates spam, denial-of-service, phishing, privacy invasion,
and all other sorts of Internet security problems

Today, however, it is unacceptable to design a new protocol without giving
it serious thought from the start

Experience shows that if it is not done at the start, it may become too hard
to do after a protocol has been widely deployed

Encryption should be a layer: once the encryption layer is removed, the
protocol should continue to adhere to the design principles articulated
above

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

176

A"ywun/an/t™>

89

Learn From
Examples:

Common Internet Protocols

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

177

SMTP - Simple Mail Transport Protocol

Described by RFC 2821 (RFC = Request For Comments)

CLIENT:
CLIENT:
SERVER:
CLIENT:
SERVER:
CLIENT:
SERVER:
CLIENT:
SERVER:
CLIENT:
CLIENT:
CLIENT:
CLIENT:
CLIENT:
CLIENT:
SERVER:
CLIENT:
SERVER:
CLIENT:

<<client connects to service port 25>> # HANDSHAKING

HELO shark.braude.ac.il # Sending host identifies itself
250 OK Hello shark, glad to meet you # Server acknowledges

MAIL FROM: <dan@braude.ac.il> # Identify sending user/domain
250 <dan@braude.ac.il>... Sender ok # Server acknowledges

RCPT TO: ran@stimpy.com # Identify target user

250 root... Recipient ok # Server acknowledges

DATA

354 Enter mail, end with "." on a line by itself

Hi Fred: Frenchy called. He wants to share

options, cards,

and a large collection of old baseball bats

Lehitraot,

Dan

. # End of multiline send

250 WAAQ1865 Message accepted for delivery
QUIT # Client (email sender) signs off
221 stimpy.com closing connection # Server disconnects

<<client hangs up>>

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

178

A"ywun/an/t™>

90

SMTP: Protocol Design

B SMTP is used for uploading mail to a mail server

m Client requests have a simple command line format:

¢ HELO ...
+ MAIL ...
¢ DATA ...
+ RCPT ...

Server responses consisting of a status code followed by an informational
message:

250 <dan@braude.ac.il>... Sender ok

221 stimpy.com closing connection

B Server response consists of a status code and a human message

B Protocol software uses the status code and usually ignores the human part

Client Servel

The DATA command sends the mail body, terminated by a line consisting of
a single dot

r Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

179

SMTP: Main Commands

SMTP is one of the oldest application layer protocols which is still in high use
on the Internet today

It is simple, effective, and has withstood the test of time

MAIL

For

HELO <sendinghostname>

This command initiates the SMTP conversation.
The host connecting to the remote SMTP server identifies itself
by it's fully qualified DNS host name.

From:<source email address>

This is the start of an email message.

The source email address is what will appear in the
"From:" field of the message.

RCPT To:<destination email address>

This identifies the receipient of the email message.
This command can be repeated multiple times for a given
message in order to deliver a single message to multiple recepients.

more details look at: http://the-welters.com/professional/smtp.html

Client Servel

r Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

180

http://the-welters.com/professional/smtp.html
http://the-welters.com/professional/smtp.html
http://the-welters.com/professional/smtp.html
http://the-welters.com/professional/smtp.html

A"ywun/an/t™>

91

POP3 - Retrieve mail from server

CLIENT: <<client connects to service port 110>>
SERVER: +0K POP3 server ready <1896.6971@mailgate.dobbs.org>
CLIENT: USER bob

SERVER: +0K bob

CLIENT: PASS redqueen

SERVER: +0K bob's maildrop has 2 messages (320 octets)
CLIENT: STAT

SERVER: +0K 2 320

CLIENT: LIST

SERVER: +0K 2 messages (320 octets)

SERVER: 1 120

SERVER: 2 200

SERVER: o

CLIENT: RETR 1

SERVER: +0K 120 octets

SERVER: <the POP3 server sends the text of message 1>
SERVER: o

CLIENT: DELE 1

SERVER: +0K message 1 deleted

CLIENT: RETR 2

SERVER: +0K 200 octets

SERVER: <the POP3 server sends the text of message 2>
SERVER: .

CLIENT: DELE 2

SERVER: +0K message 2 deleted

CLIENT: QUIT

SERVER: +0K dewey POP3 server signing off (maildrop empty)
CLIENT: <<client hangs up>>

Client Server Programming

- Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

181

m Client commands always start with a 4 characters code

Client Server Programming

POP3 - Client Commands

USER <username>
PASS <password>
STAT

LIST

RETR <message-id>
DELE <message-id>
QUIT

- Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

182

A"ywun/an/t™>

92

POP3 - Server Commands

m Server has only two response modes: +0K, -ERR

® Which are essentially “+” and “-”, where “0K” and “ERR”
are the “human parts”

B For some client commands, the server status line is
followed by data which ends with a single “.” line

+0K POP3 server ready <1896.6971@mailgate.dobbs.org>
+0K bob

+0K bob's maildrop has 2 messages (320 octets)

+0K 2 320

-ERR never heard of jim

http://www.pnambic.com/Goodies/POP3Ref.html

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

183

IMAP - Internet Message Access Protocol

m A newer post office protocol designed in a
slightly different style

®m IMAP was designed to replace POP3

m Excellent example of a mature and powerful
design worth studying and following its principles

® In the next example, user ilanitk is logging to a
mail server to retrieve her email

(well, it's not llanit who is doing it, it's outlook or gmail client without her
knowing about it)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

184

http://www.pnambic.com/Goodies/POP3Ref.html
http://www.pnambic.com/Goodies/POP3Ref.html
http://www.pnambic.com/Goodies/POP3Ref.html

A"ywun/an/t™>

93

IMAP - Internet Message Access Protocol

CLIENT:
SERVER:
CLIENT:
SERVER:
CLIENT:
SERVER:
SERVER:
SERVER:
SERVER:
SERVER:
CLIENT:
SERVER:
SERVER:
CLIENT:
SERVER:

SERVER:
SERVER:
CLIENT:
SERVER:

SERVER:
SERVER:
SERVER:
CLIENT:
SERVER:
SERVER:
CLIENT:

<<client connects to service port 143>>

* OK iserver.com IMAP4revl v12.264 server ready

A@GO1 USER "ilanitk" "june1987"

* OK User ilanitk authenticated

AGO2 SELECT INBOX

* 1 EXISTS

* 1 RECENT

* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)

* OK [UNSEEN 1] first unseen message in /var/spool/mail/dan
A0G02 OK [READ-WRITE] SELECT completed

AGO3 FETCH 1 RFC822.SIZE Get message sizes
* 1 FETCH (RFC822.SIZE 2545)

AGO3 OK FETCH completed

AGO4 FETCH 1 BODY[HEADER] Get first message header
* 1 FETCH (RFC822.HEADER {1425}

<<server sends 1425 octets of message payload>>

AGO4 OK FETCH completed

AGO5 FETCH 1 BODY[TEXT] Get first message body
* 1 FETCH (BODY[TEXT] {1120}

<<server sends 1120 octets of message payload>>

)

* 1 FETCH (FLAGS (\Recent \Seen))

AGO5 OK FETCH completed

AGO6 LOGOUT

* BYE iserver.com IMAP4revl server terminating connection
AGO6 OK LOGOUT completed

<<client hangs up>>

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

185

IMAP - Internet Message Access Protocol

®m The standard IMAP procedure is to leave messages on
the server instead of retrieving copies

® Email is only accessible when "on-line” (from different
locations, and different devices)

m Suited to a world of “always-on/anywhere” connections

® Messages remain on the server, until deleted by the user

®m Messages can be accessed by multiple client computers

m Clear advantage when you use more than one computer
to check your email (laptop, tablet, smartphone)

®m Microsoft “MAPI” is a proprietary variation for their
outlook/exchange client/server model (does not work for
anything else)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

186

A"ywun/an/t™>

94

IMAP - Internet Message Access Protocol

®m IMAP uses the "Message Length in Advance Technique":

m instead of ending the payload with a dot, the payload
length is sent in advance

m This makes life harder on the server a little bit:
+ messages have to be composed ahead of time
+ messages cannot be streamed after the send
initiation
®m But makes life easier for the client

+ Client can know in advance storage and buffer sizes it
will need to process the message

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

187

IMAP - Internet Message Access Protocol

®m Each response is tagged with a sequence label supplied
by the client

m In the example above they have the form A0O0OnN, but the
client could have generated any token into that slot

m This feature makes it possible for IMAP commands to be
streamed to the server without waiting for the responses

m A state machine in the client can then simply interpret the
responses and payloads as they come back

+ This technique cuts down on latency

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

188

A"ywun/an/t™>

95

RFC - Request For Comments

m Protocol design life cycle starts with an RFC

m RFC’s are publications made by Internet Engineering
Task Force (IETF)

m |[ETF develops and promotes Internet standards

® Founded by the US government around 1969 (part of the
ARPANET project), but is now a very large international
organization with many sub-organizations (acm, IEEE)

m Official RFC’s database: http://www.rfc-editor.org/rfc.html

®m For example, here is RFC 3501 (March 2003) for the
IMAP specifications:
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc4978.txt

® (read it and write a similar doc for BFTP ...)

Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides) 189

PARALLEL
PROGRAMMING

Adapted from David Beazley’s paper:
“An Introduction to Python Concurrency”
Presented at USENIX Technical Conference
San Diego, June, 2009

David Beazley: http://www.dabeaz.com

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com 190

http://www.rfc-editor.org/rfc.html
http://www.rfc-editor.org/rfc.html
http://www.rfc-editor.org/rfc.html
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt

A"ywun/an/t™>

96

Code Examples and Files

® Thanks Dave Beazley for contributing his fantastic set of
source code examples on Python concurrency and
parallel programming

®m \We have also added a few more examples and
rephrased Dave’s examples to suite our course
objectives

®m Our source code repository can be retrieved from:

®m Dave Beazley original resources can be retrieved from:

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

191

Concurrent Programming

m Doing more than one thing at a time

m Writing programs that can work on more than one thing at a time
m Of particular interest to programmers and systems designers

m Writing code for running on “big iron”

m But also of interest for users of multicore desktop computers

m Goal is to go beyond the user manual and tie everything together
into a "bigger picture."

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

192

http://tinyurl.com/samyz/os/projects/PARALLEL_PROGRAMMING_LAB.zip
http://tinyurl.com/samyz/os/projects/PARALLEL_PROGRAMMING_LAB.zip
http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/

A"ywun/an/t™>

97

Examples

m Web server that communicates with thousand clients (Google)
m Web client (Chrome or Firefox) that displays 10 or 20 tabs
m In the same process it may do the following tasks concurrently:
+ Download several images, audio files, movies (concurrently)
+ Display an image and a movie
+ Connect to several servers
m Microsoft Word can do several tasks at the same time
+ Let the user insert text with no waits or interrupts
+ Download/upload stuff
+ Backup the document every few seconds
+ Check spelling and grammar (and even mark words as the user is
typing)
B Image processing software that uses 8 CPU cores for parallel
intense matrix multiplications

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com 193

Multitasking

B Concurrency usually means multitasking

ask A: —- —- 4 —
run ‘ run run

task switch:‘._.

Task B: —_— —_—
run run

m If only one CPU is available, the only way it can run multiple tasks
is by rapidly switching between them in one of two way:

+ Process context switch (two processes)
+ Thread context switch (two threads in one process)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com 194

A"ywun/an/t™>

98

Parallel Processing

m [f you have many CPU’s or CORE’s then you can have true
parallelism: the two tasks run simultaneously

Tesk & run ” run run

CPU2
Task B: run run run

m If the total number of tasks exceeds the number of CPUs, then
some CPU’s must multitask (switch between tasks)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

195

Task Execution

m Every task executes by alternating between CPU processing and
I/0 handling:

+ disk read/write
+ network send/receive

[I M1
run run L runl',u run

*, 4

110 system: call

m For I/O, tasks must wait (sleep): the underlying system will carry
out the I/O operation and wake the task when it's finished

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

196

A"ywun/an/t™>

99

CPU Bound Tasks

m Atask is "CPU Bound" if it spends most of its time processing with

little 1/0
/O 11O
| D ,
run u run run
B Examples:

+ Image processing
+ Weather forecast system
+ Heavy mathematical computations

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

197

/O Bound Tasks

m Atask is "I/O Bound" if it spends most of its time waiting for 1/0

— 0 |—| 10 |—>| o — (10|
run run run run
m Examples:

+ Reading input from the user (text processors)
+ Networking
+ File Processing

® Most "normal" programs are 1/O bound

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

198

A"ywun/an/t™>

100

Shared Memory

® In many cases, two tasks need to share information (“cooperating
tasks”) and access an object simultaneously

m Two threads within the same process always share all memory of
that process

® Two independent processes on the other hand need special
mechanisms to communicate between them

Process
run run run
Task A: T CPU |
read |
write f
f CPU2
Task B: run run run :I

199

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

IPC - Inter Process Communication

B Processes within a system may be independent or cooperating

B Reasons for cooperating processes:

+ Information sharing

+ Computation speedup

+ Modularity

+ Convenience
m Cooperating processes need inter-process communication (IPC)
B Two models of IPC

+ Shared memory

+ Message passing

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com 200

A"ywun/an/t™>

101

Two Types of IPC

process A process A

shared

process B process B

tit]

kernel M | g kernel

(a) (b)

(a) Kernel shared memory: Pipe, Socket, FIFO, mailboxes
(b) Process shared memory (OS is not involved here!)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

201

IPC - Inter Process Communication

B The simplest mechanism for two processes to communicate are
+ Pipe
s FIFO
+ Shared memory (memory mapped regions)
+ Socket

Process

run run run
Task A: CPU |

IPC
Process

Task B: run run run :|CPU 2

B Processes can also communicate through the file system, but it
tends to be too slow and volatile (like suppose disk is full or bad)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

202

A"ywun/an/t™>

102

Distributed Computing

®m Tasks may be running on distributed systems
m Sometimes on two different continents

Task A:

run run » run

" messages /

Task B: run run run

m Cluster of workstations
m Usually: communication via sockets (or MPI)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

203

Programmer Performance

m Programmers are often able to get complex systems to "work" in
much less time using a high-level language like Python than if
they're spending all of their time hacking C code

B |n some cases scripting solutions might be even competitive with
C++, C# and, especially, Java

B The reason is that when you are operating at a higher level, you
often are able to find a better, more optimal, algorithm, data
structures, problem decomposition schema, or all of the above

"The best performance improvement is the transition from
the nonworking to the working state."
- John Qusterhout

"Premature optimization is the root of all evil."
- Donald Knuth

"You can always optimize it later."
- Unknown

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

204

A"ywun/an/t™>

103

Intel VLSI Tools as an Example

® In recent years, a fundamental transition has been occurring in the
way industry developers write computer programs

B The change is a transition from system programming languages
such as C or C++ to scripting languages such as Perl, Python,
Ruby, JavaScript, PHP, etc.

CIC++ lines TCL/PERL/PYTHON lines

VLSI CAD TOOL 1 510,946 644,272
VLSI CAD TOOL 2 581333 368435
VLSI CAD TOOL 3 1,517,917 1,421,400
VLSI CAD TOOL 4 422,239 1,332,767

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

205

Performance is Irrelevant!

® Many concurrent programs are "I/O bound*

B They spend virtually all of their time sitting around waiting for
+ Clients to connect
+ Client requests
+ Client responses

m Python can "wait" just as fast as C

® One exception: if you need an extremely rapid response time as in
real-time systems

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

206

A"ywun/an/t™>

104

You Can Always Go Faster

®m Python can be extended with C code
m Look at ctypes, Cython, Swig, etc.

m |[f you need really high-performance, you're not
coding Python -- you're using C extensions

® This is what most of the big scientific computing
hackers are doing

m [t's called: "using the right tool for the job™

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

207

Process Concept Review

m A process (or job) is a program in execution
m A process includes:

Text (program code)

Data (constants and fixed tables)

Heap (dynamic memory)

Stack (for function calls and temporary variables) .,
Program counter (current instruction) stack

@ @ = O IS s

CPU registers l
7. Open files table (including sockets)

B To better distinguish between a program and a
process, note that a single Word processor program 0l

may have 10 different processes running

simultaneously Lty
m Consider multiple users executing the same Internet data
explorer (each has the 6 things above)
m Computer activity is the sum of all its processes Lot

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

208

A"ywun/an/t™>

105

Process States

B As a process executes, it changes state
+ new: The process is being created
¢ running: Instructions are being executed
+ waiting: The process is waiting for some event to occur
+ ready: The process is waiting to be assigned to a processor
+ terminated: The process has finished execution

admitted interrupt terminated

scheduler dispatch

1/0O or event completion M

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

1/O or event wait

209

CPU Process Scheduling

® Modern operating systems can run hundreds (and even thousands)
of processes in parallel

m Of course, at each moment, only a single process can control a
CPU, but the operating system is switching processes every 15
milliseconds (on average) so that at 1 minute, an operating system
can swap 4000 processes!

B The replacement of a running process with a new process is
generated by an INTERRUPT

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

210

A"ywun/an/t™>

106

THREADS

® What most programmers think of when they hear about

“concurrent programming”

m A Thread is an independent task running inside a program

B Shares resources with the main program (and other threads)

+ Memory (Program text, Data, Heap)

+ Files
+ Network connections

B Has its own independent flow of execution

¢ Thread stack
¢ Thread program counter

¢ Thread CPU registers (context)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

211

One Process, Many Threads!

TEXT (PROGRAM CODE)

£
@
a DATA
()]
0 o
8 HEAP (Dynamic Memory)
a
OPEN FILES TABLE
THREAD 1 THREAD 2 THREAD 3 THREAD 4
Registers Registers Registers Registers
Program Counter | Program Counter | Program Counter | Program Counter
Stack Stack Stack Stack

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

212

A"ywun/an/t™>

107

THREADS

m Several threads within the same process can use and share
+ common variables
+ common open files
+ common networking sockets

% python program.py Key idea:Thread is like a little

"task” that independently runs

statement insid
statement inside your program
thread

create thread(foo)| www==ww=e> def foo():
statement statement
statement statement
statement e FotUUrn or exit
statement

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

213

Threading Module

®m Python threads are defined by a class
® You inherit from Thread and redefine run()

from threading import Thread
Import time

class CountdownThread(Thread):
def __init_ (self, name, count):
Thread.__init__ (self)
self.name = name
self.count = count

def run(self):

This code while self.count > 0:

rint "%s:%d" % (self.name, self.count
executesinf—— P 1f t -=1 (’)
he thread seir.count -=
f1S time.sleep(2)

return countdownl.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

214

A"ywun/an/t™>

108

Launching a Thread

®m To launch a thread: create a thread object and call start()

t1

CountdownThread(10) # Create the thread object

t2 = CountdownThread(20) # Create another thread

tl.start()
t2.start()

Launch thread t1
Launch thread t2

countdownl.py

® Thread executes until their run method stops (return or exit)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

215

Alternative way to launch threads

import time
from threading import Thread

def countdown(name, count):
while count > 0:
print "%s:%d" % (name, count)

count -= 1
time.sleep(2)
return

t1

ti.start()

t2.start() countdown2.py

m Creates a Thread object, but its run() method just calls the

countdown function

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Thread(target=countdown, args=("A", 10))
t2 = Thread(target=countdown, args=("B", 20))

216

A"ywun/an/t™>

109

Joining a Thread

B Once you start a thread, it runs independently
m Use t.join() to wait for a thread to exit

® This only works from other threads

m Athread can't join itself!

t = Thread(target=foo, args=(N/2,))
t.start()

Do some work ...

t.join() # Wait for the thread to exit
Continue your work ...

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

217

Daemonic Threads

m [f a thread runs forever, make it "daemonic*

m If you don't do this, the interpreter will lock when the main
thread exits - waiting for the thread to terminate (which never
happens)

® Normally you use this for background tasks

t.daemon = True
t.setDaemon(True)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

218

A"ywun/an/t™>

110

Access to Shared Data

®m Threads share all of the data in your program
® Thread scheduling is non-deterministic

®m Operations often take several steps and might be
interrupted mid-stream (non-atomic)

® Thus, access to any kind of shared data is also non-
deterministic

® (which is a really good way to have your head
explode)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com 219

Accessing Shared Data

m Consider a shared object

X =0
® And two threads that modify it

#Thread 1 #Thread 2
X=X+ 1 X=x-1

B |t's possible that the resulting value will be
unpredictably corrupted

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com 220

A"ywun/an/t™>

111

Accessing Shared Data

m [s this a serious concern?
® YES! This is a dead serious matter!
m Look what happens in the following example !?

def foo():
global x
for i in xrange(1000000) :
X +=1

def bar():
global x
for i in xrange(1000000):
X -=1

t1 = Thread(target=foo)
t2 = Thread(target=bar)
tl.start()

t2.start() RACE_WARS/race_1.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

221

The Therac-25 Accidents

® Machine for radiation therapy

+ Software control of electron accelerator and electron beam/Xray
production

+ Software control of dosage
m Software errors caused the death of several patients

m A series of race conditions on shared variables and poor
software design

Therao25 Unit

Room y intercom
emergency
switch

Tumtable
position
monttor
Control
console

Room
emergency
switches

Motion enable Beam on/off light
switeh (footswitch)

Display
terminal

Figuee 1. Typical Therac-25 facility

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

222

A"ywun/an/t™>

112

Race Conditions

® The corruption of shared data due to thread
scheduling is often known as a "race condition."

m |t's often quite diabolical - a program may produce
slightly different results each time it runs (even
though you aren't using any random numbers!)

m Or it may just flake out mysteriously once every two
weeks

Figure 1. Typical Therac-25 facilty

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com 223

THREADS - Summary (1)

B Threads are easier to create than processes:
+ Threads do not require a separate address space!
® Multithreading requires careful programming!

® Threads share data structures that should only be modified
by one thread at a time! (mutex lock)

®m A problem in one thread can
+ Cause the parent process to block or crash
+ and thus kill all other threads!

m Therefore a lot of caution must be taken so that different
threads don't step on each other!

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com 224

A"ywun/an/t™>

113

THREADS - Summary (2)

m Unlike threads, processes do not share the same address
space and thus are truly independent of each other.

®m Threads are considered lightweight because they use far
less resources than processes (no need for a full context
switch)

® Threads, on the other hand, share the same address
space, and therefor are interdependent

m Always remember the golden rules:
+ Write stupid code and live longer (KISS)

+ Avoid writing any code at all if you don’t have to!
(Bjarn Stroustrup, inventor of C++)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

225

Thread Synchronization

m Identifying and fixing a race condition will make you a
better programmer (e.g., it "builds character")

®m However, you'll probably never get that month of your
life back ...

m To fix : You have to synchronize threads
® Synchronization Primitives:

+ Lock

+ Semaphore

+ BoundedSemaphore
+ Condition
+ Event

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

226

A"ywun/an/t™>

114

Mutex Locks

®m Probably the most commonly used synchronization primitive

m Mostly used to synchronize threads so that only one thread can
make modifications to shared data at any given time

®m Has only two basic operations

from threading import Lock

m = Lock()
m.acquire()
m.release()

®m Only one thread can successfully acquire the lock at any given
time

m If another thread tries to acquire the lock when its already in use,
it gets blocked until the lock is released

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

227

Use of Mutex Locks
m Commonly used to enclose critical sections

X =0
X_lock = threading.Lock()

Thread-1 Thread-2

x_lock.acquire() x_lock.acquire()
Cntl_cal X=X+ 1 X=x-1
Section

x_lock.release() x_lock.release()

®m Only one thread can execute in critical section at a
time (lock gives exclusive access)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

228

A"ywun/an/t™>

115

Using a Mutex Lock

| |t is your responsibility to identify and lock
all "critical sections® !

x =0
X lock = threading.Lock()

Thread-1 Thread-2

T e, .

x lock.acquire() iox=x-1 14

X =x+ 1 Mo e -
., e

x_lock.release() _ e

If you use a lock in one place, but
not another, then you're missing
the whole point. All modifications
to shared state must be enclosed
by lock acquire()/release().

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

229

Lock Management

Locking looks straightforward
Until you start adding it to your code ...

[
|
B Managing locks is a lot harder than it looks!
®m Acquired locks must always be released!

[

However, it gets evil with exceptions and other non-linear forms
of control-flow

Always try to follow this prototype:

X =0
%x_lock = threading.Lock()

Example critical section
x_lock.acquire()
try:

statements using x
finally:

X_lock.release()

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

230

A"ywun/an/t™>

116

Lock and Deadlock

m Avoid writing code that acquires more than one mutex
lock at a time

Lock()
Lock()

my

mx.acquire()

statement using x
my.acquire()

statement using y
my.release()

...

mx.release()

® This almost invariably ends up creating a program
that mysteriously deadlocks (even more fun to debug
than a race condition)

B Remember Therac-25 ...

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

231

Semaphores

m A counter-based synchronization primitive

+ acquire() - Waits if the count is 0, otherwise
decrements the count and continues

+ release() - Increments the count and signals
waiting threads (if any)

m Unlike locks, acquire()/release() can be called in any
order and by any thread

from threading import Semaphore

m = Semaphore(n) # Create a semaphore
m.acquire() # Acquire

m.release() # Release

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

232

A"ywun/an/t™>

117

Semaphores Uses

B Resource control: limit the number of threads
performing certain operations such as database
gueries, network connections, disk writes, etc.

m Signaling: Semaphores can be used to send
"signals" between threads

®m For example, having one thread wake up another
thread.

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

233

Resource Control

m Using Semaphore to limit Resource:

import requests
from threading import Semaphore

sem = Semaphore(5) # Max: 5-threads
def get_link(url):
sem.acquire()
try:
req = requests.get(url)
return req.content
finally:
sem.release()

®m Only 5 threads can execute the get_1link function

®m This make sure we do not put too much pressure on
networking system

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

234

A"ywun/an/t™>

118

Thread Signaling

m Using a semaphore to “send a signal”:

‘sem = Semaphore(9)

Thread 1 # Thread 2
statements sem.acquire()
statements statements
statements statements
sem.release() statements

m Here, acquire() and release() occur in different
threads and in a different order

® Thread-2 is blocked until Thread-1 releases “sem”.
m Often used with producer-consumer problems

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

235

Threads Summary

m Working with all of the synchronization primitives
is a lot trickier than it looks

®m There are a lot of nasty corner cases and horrible
things that can go wrong

+ Bad performance

+ deadlocks

+ Starvation

¢ bizarre CPU scheduling
* etc...

m All are valid reasons to not use threads, unless
you do not have a better choice

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

236

A"ywun/an/t™>

119

Threads and Queues

®m Threaded programs are easier to manage if they can
be organized into producer/consumer components
connected by queues

m Instead of "sharing" data, threads only coordinate by
sending data to each other

B Think Unix "pipes" if you will...

Thread-2
Consumer

Thread-1 Queue Thread-3
Producer Consumer

Thread-4
Consumer

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

237

Queue Library Module

m Python has a thread-safe queuing module
B Basic operations

from Queue import Queue

q = Queue([maxsize]) # Create a queue

d.put(item) # Put an item on the queue
q.get() # Get an item from the queue
g.empty() # Check if empty

q.full() # Check if full

m Usage: Try to strictly adhere to get/put operations. If
you do this, you don't need to use other
synchronization primitives!

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

238

A"ywun/an/t™>

120

Queue Usage

® Most commonly used to set up various forms of
producer/consumer problems

from Queue import Queue
q = Queue()

Producer Thread Consumer Thread
for item in produce items(): while True:
g.put(item) item = g.get()

consume item(item)

m Critical point : You don't need locks here !!!
(they are already embedded in the Queue object)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

239

Producer Consumer Pattern

import time, Queue
from threading import Thread, currentThread

que = Queue.Queue()

def run_producer():
print "I am the producer"
for i in range(30):
item = "packet_" + str(i) # producing an item
que.put(item)
time.sleep(1.0)

def run_consumer():
print "I am a consumer", currentThread().name
while True:
item = que.get()
print currentThread().name, "got", item

time.sleep(5)
for i in range(10): # Starting 10 consumers !
t = Thread(target=run_consumer)
t.start()
run_producer() Code:

producer_consumers_que.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

240

A"ywun/an/t™>

121

Queue Signaling

®m Queues also have a signaling mechanism

g.task_done() # Signal that work is done
q.join() # Wait for all work to be done

® Many Python programmers don't know about this
(since it's relatively new)

m Used to determine when processing is done

Producer Thread Consumer Thread

for item in produce_items(): while True:
g.put(item) item = g.get()

Wait for consumer consume item(item)

g.join() q.task_done()

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

241

Queue Programming

® There are many ways to use queues

® You can have as many consumers/producers as you
want hooked up to the same queue

producer
:: - consumer
producer Queue
/ consumer

producer

® In practice, try to keep it simple !

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

242

A"ywun/an/t™>

122

Task Producer

H Can be defined in a function or in a class
m Here is a simple one in a function

Keep producing unlimited number of tasks
Every task is pushed to a task_que

def task_producer(id, task_que):
while True:

a = random.randint(@,100) # random int from @ to 100
b = random.randint(0,100) # random int from @ to 100
task = "%d*%d" % (a,b) # multiplication task
time.sleep(3) # 3 sec to produce a task
task_que.put(task)

print "Producer %d produced task: %s" % (id, task)

Code:
producer_consumer_1.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

243

Worker (consumer)

H Can be defined in a function or in a class
m Here is a simple one in a function

Accepts unlimited number of tasks (from task_que)
It solves a task and puts the result in the result_que.

def worker(id, task_que, result_que):
while True:

task = task_que.get()
t = random.uniform(2,3) # Take 2-3 seconds to complete a task
time.sleep(t)
answer = eval(task)
result_que.put(answer)
print "Worker %d completed task %s: answer=%d" % (id, task, answer)

Code:
producer_consumer_1.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

244

A"ywun/an/t™>

123

Simulation: 2 producers, 3 workers

def simulation2():

task_que = Queue()
result_que = Queue()

Two producers
pl = Thread(target=task_producer, args=(1, task_que))
p2 = Thread(target=task_producer, args=(2, task_que))

Three workers

wl = Thread(target=worker, args=(1, task_que, result_que))
w2 = Thread(target=worker, args=(2, task_que, result_que))
w3 = Thread(target=worker, args=(3, task_que, result_que))

pl.start()
p2.start()
wl.start()
w2.start()
w3.start()
producers and workers run forever ...

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Code: producer_consumer_1.py

245

Performance Test

® Consider this CPU-bound function

def count(n):
while n > 0:
n -=1

® Sequential Execution:

count(100000000)
count (100000000)

® Threaded execution

t1l = Thread(target=count,args=(100000000,))
tl.start()
t2 = Thread(target=count,args=(100000000,))
t2.start()

® Now, you might expect two threads to run
twice as fast on multiple CPU cores

| Code: threads_perf.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

246

A"ywun/an/t™>

124

Performance Test

Bizarre Results

® Performance comparison (Dual-Core 2Ghz
Macbook, OS-X 10.5.6)

Sequential :24.6s
Threaded :45.5s (1.8X slower!)

e |f you disable one of the CPU cores...

Threaded :38.0s

® Insanely horrible performance. Better
performance with fewer CPU cores? It
makes no sense.

| Code: threads_perf.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

247

Threads Summary (1)

B To understand why this is so and how to make better use of
threads, keep reading David Beazley Paper at:

®m Threads are still useful for 1/0-bound apps, and do save time in
these situations (which are more common than CPU-bound
apps)

m For example : A network server that needs to maintain several
thousand long-lived TCP connections, but is not doing tons of
heavy CPU processing

B Most systems don't have much of a problem -- even with
thousands of threads

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

248

http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/
http://www.dabeaz.com/usenix2009/concurrent/

A"ywun/an/t™>

125

Threads Summary (2)

m If everything is I1/0-bound, you will get a very quick response
time to any 1/O activity

B Python isn't doing the scheduling

m So, Python is going to have a similar response behavior as a C
program with a lot of 1/O bound threads

m Python threads are a useful tool, but you have to know how and
when to use them

m |/O bound processing only

B Limit CPU-bound processing to C extensions (that release the
GIL)

®m To parallel CPU bound applications use Python’s

multiprocessing module ... our next topic

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

249

Multi Processing

®m An alternative to threads is to run multiple
independent copies of the Python interpreter

® In separate processes
m Possibly on different machines

m Get the different interpreters to cooperate by having
them send messages to each other

== ==
Python pryv—— Python

®m Each instance of Python is independent
®m Programs just send and receive messages

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

250

A"ywun/an/t™>

126

Message Passing

B Two main issues:
® What is a message?
® What is the transport mechanism?

B A Message is just a bunch of bytes (buffer)

m A "serialized" representation of some data
m Could be done via files, but it's very slow and volatile

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

251

Message Transport

m Pipes

m Sockets

m FIFOs

® MPI (Message Passing Interface)
m XML-RPC (and many others)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

252

A"ywun/an/t™>

127

Pipe Example 1

B The bc.exe (Berkeley Calculator) performs Math much faster
than Python (think of it as a simple Matlab)

B bc.exe reads from stdin and writes to stdout
m [tis included in the parallel programming code bundle
m Here is a bc program to calculate PI from term m to term n:

This is not Python! This is a bc code to
for the Gregory-Leibnitz series for of pi:
#

pi = 4/1 - 4/3 + 4/5 - 4/7 + ...
define psum(m,n) {
auto i
s=0
for (i=m; i < n; ++i)
s =s + (-1)* * 4.0/(2*i+1.0)
return (s)

}

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

253

Pipe Example 1

import subprocess
code = """
define psum(m,n) {
auto i
s=0
for (i=m; i < n; ++i)
s =s + (-1)* * 4.0/(2*i+1.0)
return (s)
}

This is code in a totally different language !

Starting a pipe to the bc.exe program
p = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)

Sending code to bc by writing to the Python side of the Pipe
p.stdin.write(code)

p.stdin.write("scale=60\n") # 60 digits precision
p.stdin.write("psum(0,1000000)\n") # Now we do the calculation!
result = p.stdout.readline() # Now we read the result!

p.terminate()
print result

IPC/pipe_to_bc_1.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

254

A"ywun/an/t™>

128

Pipe Example 2

m |f one sub-process gets us a lot of speed, how about opening
two sub-processes in parallel?

Starting two pipes to the bc.exe program!
pl = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
p2 = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)

Sending code to bc by writing to the Python side of the Pipe
pl.stdin.write(code)

p2.stdin.write(code)

pl.stdin.write("scale=60\n") # 60 digits precision
p2.stdin.write("scale=60\n")

Now we do the calculation!

Both processes run in parallel in the background !
pl.stdin.write("psum(0,500000)\n") # We divide the task to two parts !
p2.stdin.write("psum(500000, 1000000)\n") # Part 2

resultl = pl.stdout.readline()

result2 = p2.stdout.readline()
pl.terminate()

p2.terminate()

print Decimal(resultl) + Decimal(result2)

IPC/pipe_to_bc_2.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

255

Pipe Example 3

m That worked all right, but if we want to use our 8 CPU cores, we
need to be more prudent!

def bc_worker(a,b):
p = subprocess.Popen(["bc.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
p.stdin.write(code)
p.stdin.write("scale=60\n") # 60 digits precision
p.stdin.write("psum(%d,%d)\n" % (a,b))
return p

8 parallel sums of 500K terms chunks ... (total 4M terms)
procs = []
chunk = 500000
for i in range(8):
a =i * chunk
b = (i+1) * chunk
p = bc_worker(a,b)
procs.append(p)

getcontext().prec = 60
result = Decimal("@.0")

for p in procs:
r = p.stdout.readline() IPC/pipe_to_bc_3.py

p.terminate()
result += Decimal(r)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

256

A"ywun/an/t™>

129

The Big Picture

m Can easily have 10s-100s-1000s of communicating Python
interpreters and external programs through pipes and sockets

m However, always keep the “golden rules” in mind ...

|e.exe | | b.exe |

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com Golden rule: He who has the gold makes the rules

257

The Multiprocessing Module

B This is a module for writing concurrent programs based on
communicating processes

B A module that is especially useful for concurrent CPU-bound
processing

m Here's the cool part:
You already know how to us multiprocessing!

m |t is exactly as using Threads, just replace “Thread” with
“Process”

m Instead of "Thread" objects, you now work with "Process"
objects

m But! One small difference: you need to use Queue’s for process
communication (or else you have independent processes with
no shared data at all)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

258

A"ywun/an/t™>

130

Multiprocessing Example 1

m Define tasks using a Process class
® You inherit from Process and redefine run()

import time, os
from multiprocessing import Process

print "Parent Process id:", os.getpid()

class CountdownProcess(Process):
def __init__ (self, name, count):
Process.__init__ (self)
self.name = name
self.count = count

def run(self):
print "Child Process id:", os.getpid()
while self.count > 0:
print "%s:%d" % (self.name, self.count)
self.count -=
time.sleep(2)

return

icowﬂdowanpy

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

259

Multiprocessing Example 1

H To launch, same idea as with threads
® You inherit from Process and redefine run()

if __name__ == '__main__':
pl = CountdownProcess("A", 10) # Create the process object
pl.start() # Launch the process

p2 = CountdownProcess("B", 20) # Create another process
p2.start() # Launch

| countdownpl.py

B Processes execute until run() stops

m critical detail: Always launch in main as shown (or
else your Windows will crash)

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

260

A"ywun/an/t™>

Multiprocessing Example 2

m Alternative method of launching processes is by using simple
functions instead of classes

| countdownp2.py

def countdown(name, count):
print "Process id:", os.getpid()
while count > 0:
print "%s:%d" % (name, count)

count -= 1
time.sleep(2)
return

Sample execution

if _ name__ == '__main__':
pl = Process(target=countdown, args=("A", 10))
p2 = Process(target=countdown, args=("B", 20))

pl.start()
p2.start()

m Creates two Process objects, but their run() method just calls the
countdown function

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

261

Does it Work ?

® Consider this CPU-bound function

def count(n):
while n > 0:

n-=1
® Sequential Execution:
count (100000000)
count (100000000) _"

® Multiprocessing Execution

pl = Process(target=count,args=(100000000,))

pl.start() —- |25$

p2 = Process(target=count,args=(100000000,))
p2.start()

® Yes, it seems to work

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

262

131

A"ywun/an/t™>

132

Other Process Features

® Joining a process (waits for termination)

p = Process(target=somefunc)
p.start()

p.join()
® Making a daemonic process

p = Process(target=somefunc)
p.daemon = True
p.start()

e Terminating a process

p = Process(target=somefunc)
p.terminate()

® These mirror similar thread functions

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

263

Distributed Memory

m Unlike Threads, with multiprocessing, there are no
shared data structures, in fact no sharing at all !

m Every process is completely isolated!

m Since there are no shared structures, forget about all
of that locking business

m Everything is focused on messaging

Sacket buffer

Uniix kemnel

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

264

http://fxa.noaa.gov/kelly/ipc/

A"ywun/an/t™>

Pipes

® A channel for sending/receiving objects

(cl, ¢2) = multiprocessing.Pipe()

® Returns a pair of connection objects (one
for each end-point of the pipe)

¢ Here are methods for communication

c.send(obj) # Send an object
c.recv() # Recelve an object

c.send_bytes(buffer) # Send a buffer of bytes
c.recv_bytes([max]) # Receive a buffer of bytes

c.poll([timeocut]) # Check for data

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Pipe Example 1

m A simple data consumer

From multiprocessing import Process, Pipe

def consumer(pl, p2):
pl.close() # Close producer's end (not used)
while True:
try:
item = p2.recv()
except EOFError:
break
print "Consumer got:", item

m A simple data producer

def producer(outp):
print "Process id:", os.getpid()
for i in range(10):
item = "item" + str(i) # make an item
print "Producer produced:", item
outp.send(item)

| pipe_for_producer_consumer.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

133

A"ywun/an/t™>

134

Pipe Example 1

®m Launching Consumer and Producer
® The consumer runs in a child process
® But the producer runs in the parent process
® Communication is from parent to child

if _ pname__ == '__main__':
pl, p2 = Pipe()

c = Process(target=consumer, args=(pl, p2))
c.start()

Close the input end in the producer
p2.close()

run_producer(pl)

Close the pipe

pl.close() pipe_for_producer_consumer.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

267

Message Queues

® multiprocessing also provides a queue

® The programming interface is the same

from multiprocessing import Queue

q = Queue()
g.put(item) # Put an item on the queue
item = g.get() # Get an item from the queue

® There is also a joinable Queue

from multiprocessing import JoinableQueue

g = JoinableQueue()
g.task_done() # Signal task completion
g.join() # Wait for completion

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

268

A"ywun/an/t™>

135

Queue Implementation

B Queues are implemented on top of pipes

m A subtle feature of queues is that they have a "feeder
thread" behind the scenes

® Putting an item on a queue returns immediately
+ Allowing the producer to keep working

H The feeder thread works on its own to transmit data
to consumers

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

269

Deadlocks

m Assume Alice wants to transfer money to Bob and at the
same time Bob wants to transfers money to Alice

m Alice's bank grabs a lock on Alice's account, then asks
Bob's bank for a lock on Bob's account

® Bob's bank locked Bob's account and is now asking for a
lock on Alice's account

®m Bang! you have a deadlock!

Code:
DEADLOCK/bank_account_1.py
DEADLOCK/bank_account_2.py

http://www.eveninghour.com/images/online_transfer2.jpg
Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

270

A"ywun/an/t™>

136

Dining Philosophers

5 philosopher with 5 forks sit around a circular table

The forks are placed between philosophers

Each philosopher can be in one of three states:
+ Thinking (job is waiting)
¢ Hungry (job ready to run)
+ Eating (job is running)

To eat, a philosopher must have two forks
+ He must first obtain the first fork (left or right)
+ After obtaining the first fork he proceeds to obtain the second fork
+ Only after having two forks he is allowed to eat
+ (The two forks cannot be obtained simultaneously!)

Analogy: a process that needs to access two resources: a disk and
printer for example

| Code: DEADLOCK/dining_philosophers.py |

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

271

Dining Philosophers: Deadlock

m A Deadlock is a situation in which all 5 philosophers are hungry but
none can eat forever since each philosopher is waiting for a fork to be
released

B Sometimes this situation is called: full starvation

B |n operating systems, a philosopher represents a thread or a process
that need access to two resources (like two files or a disc and printer)
in order to proceed

m Operating system puts every process into a device Queue each time it
needs to access a device (disc, memory, or CPU)

Typical deadlock situation: %
Each Philosopher grabbed

the left fork and waits for

the right fork ,i * \I

Code: DEADLOCK/dining_philosophers.py |

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

272

A"ywun/an/t™>

137

Dining Philosophers: Solution 1

A philosopher who wants to eat first picks up the salt
shaker on the table

m Assume only one salt shaker exists!

All other philosophers that do not have the salt
shaker must release their forks

The philosopher that got the salt shaker picks up his
forks, eats and when finishes must put the salt
shaker back at the table center

This solution works but is not optimal: only one
philosopher can eat at any given time

if we further stipulate that the philosophers agree to
go around the table and pick up the salt shaker in
turn, this solution is also fair and ensures no
philosopher starves.

| Code: DEADLOCK/dining_philosophers.py |

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com 273

Dining Philosophers: Solution 2

m Each philosopher flips a coin:
+ Heads, he tries to grab the right fork
+ Tails, he tries to grab the left fork
m |f the second fork is busy, release the first fork and
try again
m With probability 1, he will eventually eat
m Again, this solution relies on defeating circular
waiting whenever possible and then resorts to

breaking 'acquiring while holding' as assurance for
the case when two adjacent philosophers' coins both A

come up the same. ‘ L
m Again, this solution is fair and ensures all ‘\ /‘

philosophers can eat eventually.

|C0de: DEADLOCK/dining_philosophers.py | ‘ ? ‘

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

A"ywun/an/t™>

138

Dining Philosophers: Solution 3

The chef that cooked the meal dictates who should eat and
when to prevent any confusion. This breaks the 'blocking
shared resources' condition.

The chef assures all philosophers that when they try to pick
up their forks, they will be free!

Effectively the chef enforces a fair “fork discipline” over the
philosophers

This is the most efficient solution (no shared
resources/locking involved) but is in practice the hardest to
achieve (the chef must know how to instruct the
philosophers to eat in a fair, interference-free fashion).

B For example, the chef can assign a number to each
philosopher and decide that the following pairs of
philosophers eat at the following order:

(3,5 ->(1,4)->(2,4)->(1,3)->(5,2)

This schedule ensures that each philosopher gets to eat
twice in each round and will neither deadlock nor starve

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

Dining Philosophers
Solution 3 Implementation

m A Python program model for the dining philosophers is
coded in the file:

| PARALLEL_PROGRAMMING_LAB/DEADLOCK/dining_philosophers.py

B Based on this code, try to implement a Chef Thread which
monitors the 5 philosophers and solves the problem as
described above

® How to go about solution 2 ?

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

A"ywun/an/t™>

Dining Philosophers: Solution 4

B Each philosopher behaves as usual. That is whenever it
gets hungry, he is trying to acquire the two forks as usual
(in whatever order he wants)

m Each Philosopher is assigned a “Hunger Index”
B This is roughly the time that has passed since he last ate

B As soon as the highest Hunger Index rises above a fixed
threshold, the neighbors of this philosopher must release
the forks near the starving philosopher (or complete their
food if they were eating and then release the forks)

B This guarantees that the starving philosopher will get to eat
in a short time.

m Once the starving philosopher is satiated, his “Hunger
Index” drops down below the next starving philosopher

® How would you implement this solution?

Start with the file:
PARALLEL_PROGRAMMING_LAB/DEADLOCK!/dining_philosophers.py

Based on David Beazley Python Concurrency Paper: http://www.dabeaz.com

139

